skip to main content


Search for: All records

Award ID contains: 1934322

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of optimal control of district cooling energy plants (DCEPs) consisting of multiple chillers, a cooling tower, and a thermal energy storage (TES), in the presence of time-varying electricity price. A straightforward application of model predictive control (MPC) requires solving a challenging mixed-integer nonlinear program (MINLP) because of the on/off of chillers and the complexity of the DCEP model. Reinforcement learning (RL) is an attractive alternative since its real-time control computation is much simpler. But designing an RL controller is challenging due to myriad design choices and computationally intensive training. In this paper, we propose an RL controller and an MPC controller for minimizing the electricity cost of a DCEP and compare them via simulations. The two controllers are designed to be comparable in terms of objective and information requirements. The RL controller uses a novel Q-learning algorithm that is based on least-squares policy iteration. We describe the design choices for the RL controller, including the choice of state space and basis functions, that are found to be effective. The proposed MPC controller does not need a mixed integer solver for implementation, but only a nonlinear program (NLP) solver. A rule-based baseline controller is also proposed to aid in comparison. Simulation results show that the proposed RL and MPC controllers achieve similar savings over the baseline controller, about 17%. 
    more » « less
    Free, publicly-accessible full text available November 7, 2024
  2. We present an open-source wireless network and data management system for collecting and storing indoor environmental measurements and perceived comfort via participatory sensing in commercial buildings. The system, called a personal comfort and indoor environment measurement (PCIEM) platform, consists of several devices placed in office occupants’ work areas, a wireless network, and a remote database to store the data. Each device, called a PCFN (personal comfort feedback node), contains a touchscreen through which the occupant can provide feedback on their perceived comfort on-demand, and several sensors to collect environmental data. The platform is designed to be part of an indoor climate control system that can enable personalized comfort control in real-time. We describe the design, prototyping, and initial deployment of a small number of PCFNs in a commercial building. We also provide lessons learned from these steps. Application of the data collected from the PCFNs for modeling and real-time control will be reported in future work. We use hardware components that are commercial and off-the-shelf, and our software design is based on open-source tools that are freely and publicly available to enable repeatability. 
    more » « less
  3. null (Ed.)
    Abstract An autonomous adaptive model predictive control (MPC) architecture is presented for control of heating, ventilation, and air condition (HVAC) systems to maintain indoor temperature while reducing energy use. Although equipment use and occupant changes with time, existing MPC methods are not capable of automatically relearning models and computing control decisions reliably for extended periods without intervention from a human expert. We seek to address this weakness. Two major features are embedded in the proposed architecture to enable autonomy: (i) a system identification algorithm from our prior work that periodically re-learns building dynamics and unmeasured internal heat loads from data without requiring re-tuning by experts. The estimated model is guaranteed to be stable and has desirable physical properties irrespective of the data; (ii) an MPC planner with a convex approximation of the original nonconvex problem. The planner uses a descent and convergent method, with the underlying optimization problem being feasible and convex. A yearlong simulation with a realistic plant shows that both of the features of the proposed architecture—periodic model and disturbance update and convexification of the planning problem—are essential to get performance improvement over a commonly used baseline controller. Without these features, long-term energy savings from MPC can be small while with them, the savings from MPC become substantial. 
    more » « less
  4. null (Ed.)
    Flexible loads are a resource for the Balancing Authority (BA) of the future to aid in the balance of power supply and demand. In order to be used as a resource, the BA must know the capacity of the flexible loads to vary their power demand over a baseline without violating consumers' quality of service (QoS). Existing work on capacity characterization is model-based: They need models relating power consumption to variables that dictate QoS, such as temperature in the case of an air conditioning system. However, in many cases the model parameters are not known or are difficult to obtain. In this work, we pose a data driven capacity characterization method that does not require model information, it only needs access to a simulator. The capacity is characterized as the set of feasible spectral densities (SDs) of the demand deviation. The proposed method is an extension of our recent work on SD-based capacity characterization that was limited to the case where the loads dynamic model is completely known. Numerical evaluation of the method is provided, which compares our approach to the model-based solution of our past work. 
    more » « less
  5. null (Ed.)
    With increase in the frequency of natural disasters such as hurricanes that disrupt the supply from the grid, there is a greater need for resiliency in electric supply. Rooftop solar photovoltaic (PV) panels along with batteries can provide resiliency to a house in a blackout due to a natural disaster. Our previous work showed that intelligence can reduce the size of a PV+battery system for the same level of post-blackout service compared to a conventional system that does not employ intelligent control. The intelligent controller proposed is based on model predictive control (MPC), which has two main challenges. One, it requires simple yet accurate models as it involves real-time optimization. Two, the discrete actuation for residential loads (on/off) makes the underlying optimization problem a mixed-integer program (MIP) which is challenging to solve. An attractive alternative to MPC is reinforcement learning (RL) as the real-time control computation is both model-free and simple. These points of interest accompany certain trade-offs; RL requires computationally expensive offline learning, and its performance is sensitive to various design choices. In this work, we propose an RL-based controller. We compare its performance with the MPC controller proposed in our prior work and a non-intelligent baseline controller. The RL controller is found to provide a resiliency performance — by commanding critical loads and batteries—similar to MPC with a significant reduction in computational effort. 
    more » « less
  6. null (Ed.)
    Model predictive control (MPC) has been widely investigated for climate control of commercial buildings for both energy efficiency and demand flexibility. However, most MPC formulations ignore humidity and latent heat. The inclusion of moisture makes the problem considerably more challenging, primarily since a cooling and dehumidifying coil model which accounts for both sensible and latent heat transfers is needed. In our recent work, we proposed an MPC controller in which humidity and latent heat were incorporated in a principled manner, by using a reduced-order model of the cooling coil. Because of the highly nonlinear nature of the process in a cooling coil, the model needs to be modified based on certain weather/climatic conditions to have sufficient prediction accuracy. Doing so, however, leads to a mixed-integer nonlinear program (MINLP) that is challenging to solve. In this work, we propose an MPC formulation that retains the NLP (nonlinear programming problem) structure in all climate zones/weather conditions. This feature makes the control system capable of autonomous operation. Simulations in multiple climate zones and weather conditions verify the energy savings performance, and autonomy of the proposed controller. We also compare the performance of the proposed MPC controller with an MPC formulation that does not explicitly consider humidity. Under certain conditions, it is found that the MPC controller that excludes humidity leads to poor humidity control, or higher energy usage as it is unaware of the latent load on the cooling coil. 
    more » « less
  7. null (Ed.)
    Abstract This paper presents a novel architecture for model predictive control (MPC)-based indoor climate control of multi-zone buildings to provide energy efficiency. Unlike prior works, we do not assume the availability of a high-resolution multi-zone building model, which is challenging to obtain. Instead, the architecture uses a low-resolution model of the building that is divided into a small number of “meta-zones” that can be easily identified using existing data-driven modeling techniques. The proposed architecture is hierarchical. At the higher level, an MPC controller uses the low-resolution model to make decisions for the air handling unit (AHU) and the meta-zones. Since the meta-zones are fictitious, a lower level controller converts the high-level MPC decisions into commands for the individual zones by solving a projection problem that strikes a trade-off between two potentially conflicting goals: the AHU-level decisions made by the MPC are respected while the climate of the individual zones is maintained within the comfort bounds. The performance of the proposed controller is assessed via simulations in a high-fidelity simulation testbed and compared to that of a rule-based controller that is used in practice. Simulations in multiple weather conditions show the effectiveness of the proposed controller in terms of energy savings, climate control, and computational tractability. 
    more » « less
  8. null (Ed.)