skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Terrestrial stable isotope record of Miocene monsoon and mid-latitude westerly dynamics in the Southwest US
The US Southwest is projected to get warmer and drier due to increasing atmospheric CO2, which threatens the region’s ability to support its current ecosystem. However, there is high uncertainty in this projection as precipitation and evapotranspiration remain poorly constrained. We use paleoclimate proxy data from the Miocene to gain insights into Southwest climate during periods of higher atmospheric CO2. Today, the southwest US is characterized by two wet seasons: in winter, the mid-latitude westerlies deliver Pacific-derived moisture, whereas summer moisture is predominantly delivered by the North American Monsoon. We present a new high-resolution sedimentary archive of carbon and oxygen stable isotope (d18O, d13Ccarbonate, and d13Corganic) data to constrain the hydroclimate and ecosystem productivity response to higher atmospheric CO2, derived from authigenic carbonates within the Miocene-aged Santa Fe Group of the Rio Grande Rift from the Española and Albuquerque basins. We find substantial spatial and temporal variability in d18O, likely reflecting variability in the strength of the two circulation systems that deliver moisture to the southwest US. Overall, reconstructed precipitation d18O is lower than today throughout much of the Miocene, suggesting potentially a greater influence of the wintertime westerlies in the moisture budget of the southwest US during the Miocene. Sedimentary organic d13C is < -20‰ throughout the Miocene, indicative of little C4 plant influence during this time. Sedimentary carbonate d13C is generally always less than -5‰, and is positively correlated to carbonate d18O. Such coupling may reflect the influence of evaporation on these samples or a strong link between moisture delivery and primary productivity in this arid climate.  more » « less
Award ID(s):
2202916
PAR ID:
10516943
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teagle, Damon A (Ed.)
    The Cedars ultramafic block hosts alkaline springs (pH > 11) in which calcium carbonate forms upon uptake of atmospheric CO2 and at times via mixing with surface water. These processes lead to distinct carbonate morphologies with ‘‘floes” forming at the atmosphere-water interface, ‘‘snow” of fine particles accumulating at the bottom of pools and terraced constructions of travertine. Floe material is mainly composed of aragonite needles despite CaCO3 precipitation occurring in waters with low Mg/Ca (<0.01). Precipitation of aragonite is likely promoted by the high pH (11.5–12.0) of pool waters, in agreement with published experiments illustrating the effect of pH on calcium carbonate polymorph selection. The calcium carbonates exhibit an extreme range and approximately 1:1 covariation in d13C (9 to 28‰ VPDB) and d18O (0 to 20‰ VPDB) that is characteristic of travertine formed in high pH waters. The large isotopic fractionations have previously been attributed to kinetic isotope effects accompanying CO2 hydroxylation but the controls on the d13C-d18O endmembers and slope have not been fully resolved, limiting the use of travertine as a paleoenvironmental archive. The limited areal extent of the springs (0.5 km2) and the limited range of water sources and temperatures, combined with our sampling strategy, allow us to place tight constraints on the processes involved in generating the systematic C and O isotope variations. We develop an isotopic reaction–diffusion model and an isotopic box model for a CO2-fed solution that tracks the isotopic composition of each dissolved inorganic carbon (DIC) species and CaCO3. The box model includes four sources or sinks of DIC (atmospheric CO2, high pH spring water, fresh creek water, and CaCO3 precipitation). Model parameters are informed by new floe D44Ca data (0.75 ± 0.07‰), direct mineral growth rate measurements (4.8 to 8  107 mol/m2/s) and by previously published elemental and isotopic data of local water and DIC sources. Model results suggest two processes control the extremes of the array: (1) the isotopically light end member is controlled by the isotopic composition of atmospheric CO2 and the kinetic isotope fractionation factor (KFF (‰) = (a  1)  1000) accompanying CO2 hydroxylation, estimated here to be 17.1 ± 0.8‰ (vs. CO2(aq)) for carbon and 7.1 ± 1.1‰ (vs. ‘CO2(aq)+H2O’) for oxygen at 17.4 ± 1.0 C. Combining our results with revised CO2 hydroxylation KFF values based on previous work suggests consistent KFF values of 17.0 ± 0.3‰ (vs. CO2(aq)) for carbon and 6.8 ± 0.8‰ for oxygen (vs. ‘CO2(aq)+H2O’) over the 17–28 C temperature range. (2) The isotopically heavy endmember of calcium carbonates at The Cedars reflects the composition of isotopically equilibrated DIC from creek or surface water (mostly HCO- 3, pH = 7.8–8.7) that occasionally mixes with the high-pH spring water. The bulk carbonate d13C and d18O values of modern and ancient travertines therefore reflect the proportion of calcium carbonate formed by processes (1) and (2), with process (2) dominating the carbonate precipitation budget at The Cedars. These results show that recent advances in understanding kinetic isotope effects allow us to model complicated but common natural processes, and suggest ancient travertine may be used to retrieve past meteoric water d18O and atmospheric d13C values. There is evidence that older travertine at The Cedars recorded atmospheric d13C that predates large-scale combustion of fossil fuels. 
    more » « less
  2. Abstract. The Great Plains of North America host a stark climatic gradient, separating the humid and well-watered eastern US from the semi-arid and arid western US, and this gradient shapes the region's water availability, its ecosystems, and its economies. This climatic boundary is largely set by the influence of two competing atmospheric circulation systems that meet over the Great Plains – the wintertime westerlies bring dominantly dry air that gives way to moist, southerly air transported by the Great Plains low-level jet in the warmer months. Climate model simulations suggest that, as CO2 rises, this low-level jet will strengthen, leading to greater precipitation in the spring but less in the summer and, thus, no change in mean annual precipitation. Combined with rising temperatures that will increase potential evapotranspiration, semi-arid conditions will shift eastward, with potentially large consequences for the ecosystems and inhabitants of the Great Plains. We examine how hydroclimate in the Great Plains varied in the past in response to warmer global climate by studying the paleoclimate record within the Ogallala Formation, which underlies nearly the entire Great Plains and provides a spatially resolved record of hydroclimate during the globally warmer late Miocene. We use the stable isotopes of oxygen (δ18O) as preserved in authigenic carbonates hosted within the abundant paleosol and fluvial successions that comprise the Ogallala Formation as a record of past hydroclimate. Today, and coincident with the modern aridity gradient, there is a sharp meteoric water δ18O gradient with high (−6 ‰ to 0 ‰) δ18O in the southern Great Plains and low (−12 ‰ to −18 ‰) δ18O in the northern plains. We find that the spatial pattern of reconstructed late Miocene precipitation δ18O is indistinguishable from the spatial pattern of modern meteoric water δ18O. We use a recently developed vapor transport model to demonstrate that this δ18O spatial pattern requires air mass mixing over the Great Plains between dry westerly and moist southerly air masses in the late Miocene – consistent with today. Our results suggest that the spatial extents of these two atmospheric circulation systems have been largely unchanged since the late Miocene and any strengthening of the Great Plains low-level jet in response to warming has been isotopically masked by proportional increases in westerly moisture delivery. Our results hold implications for the sensitivity of Great Plains climate to changes in global temperature and CO2 and also for our understanding of the processes that drove Ogallala Formation deposition in the late Miocene. 
    more » « less
  3. The hydroclimate of the southwestern United States (US) region changed abruptly during the latest Pleistocene as the continental ice sheets over North America retreated from their most southerly extent. To investigate the nature of this change, we present a new record from Lake Elsinore, located 36 km inland from the Pacific Ocean in Southern California and evaluate it in the context of records across the coastal and interior southwest United States, including northwest Mexico. The sediment core recovered from Lake Elsinore provides a continuous sequence with multi-decadal resolution spanning 19e9 ka BP. Sedimentological and geochemical analyses reveal hydrologic variability. In particular, sand and carbonate components indicate abrupt changes at the Oldest Dryas (OD), BøllingeAllerød (BA), and Younger Dryas (YD) transitions, consistent with the timing in Greenland. Hydrogen isotope analyses of the C28 nalkanoic acids from plant leaf waxes (dDwax) reveal a long term trend toward less negative values across 19 9 ka BP. dDwax values during the OD suggest a North Pacific moisture source for precipitation, consistent with the dipping westerlies hypothesis. We find no isotopic evidence for the North American Monsoon reaching as far west as Lake Elsinore; therefore, we infer that wet/dry changes in the coastal southwest were expressed through winter-season precipitation, consistent with modern climatology. Comparing Lake Elsinore to other southwest records (notably Cave of Bells and Fort Stanton) we find coincident timing of the major transitions (OD to BA, BA to YD) and hydrologic responses during the OD and BA. The hydrologic response, however, varied during the YD consistent with a dipole between the coastal and interior southwest. The coherent pattern of hydrologic responses across the interior southwest US and northwest Mexico during the OD (wet), the BA (drier), and YD (wet) follows changes in the Atlantic Meridional Overturning Circulation, presumably via its combined influence on North Pacific winter storm tracks and the extent/magnitude of the North American Monsoon. In contrast, Lake Elsinore and the coastal southwest experiences a deglacial drying trend punctuated by abrupt change at the OD to BA and BA to YD transitions. This trend tracks rising greenhouse gases through the deglacial, with an apparent southward shift in westerly moisture sources adjusting to the retreating ice sheet. 
    more » « less
  4. Abstract Predictions for the southwestern US with warming often suggest increased aridity. We investigate the sedimentary record of the Miocene Climate Optimum and Transition (MCO and MCT; ∼17–14 Ma) in northern New Mexico to understand the impact of warmer global temperatures and higherpCO2on southwestern US hydroclimate. The MCO and MCT comprised a globally warmer period with elevatedpCO2similar to end‐of‐the‐century (∼400–800 ppm) projections. We present new stable isotope (δ18O and δ13C) records of vadose‐zone and groundwater terrestrial carbonates and of modern precipitation, stream, and groundwater from the Española basin in northern New Mexico and establish a high‐resolution age model using new40Ar/39Ar ages. We interpret δ18O as reflecting the balance between summertime monsoonal and wintertime precipitation and δ13C as a reflection of plant productivity. Terrestrial carbonate δ18O is lowest during the MCO and MCT and is correlated with terrestrial carbonate δ13C and anti‐correlated with the benthic δ18O record. We interpret these data as recording an overall winter‐wet climate during the MCO and MCT, but that precipitation seasonality varied in response to changes in global climate during this period. The further correlation with carbonate δ13C suggests that plant productivity was driven by the amount of wintertime precipitation. Comparison with middle Miocene climate model simulations reveals that higher CO2drives a shift toward wintertime precipitation. Though paleogeographic changes may obscure a direct comparison to modern warming, overall, our findings suggest that prolonged global warmth may be associated with increased wintertime precipitation and greater primary productivity in northern New Mexico. 
    more » « less
  5. The Monsoon Rainfall Manipulation Experiment (MRME) is to understand changes in ecosystem structure and function of a semiarid grassland caused by increased precipitation variability, which alters the pulses of soil moisture that drive primary productivity, community composition, and ecosystem functioning. The overarching hypothesis being tested is that changes in event size and variability will alter grassland productivity, ecosystem processes, and plant community dynamics. In particular, we predict that many small events will increase soil CO2 effluxes by stimulating microbial processes but not plant growth, whereas a small number of large events will increase aboveground NPP and soil respiration by providing sufficient deep soil moisture to sustain plant growth for longer periods of time during the summer monsoon.  These data were collected at a meteorological station at the Monsoon Site. 
    more » « less