skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HO Puppis: Not a Be Star, but a Newly Confirmed IW And-type Star
Award ID(s):
1440341 2034437
PAR ID:
10280402
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
911
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We introduce new analysis methods for studying the star cluster formation processes in Orion A, especially examining the scenario of a cloud–cloud collision. We utilize the CARMA–NRO Orion survey 13CO (1–0) data to compare molecular gas to the properties of young stellar objects from the SDSS III IN-SYNC survey. We show that the increase of $$v_{\rm {}^{13}CO} - v_{\rm YSO}$$ and Σ scatter of older YSOs can be signals of cloud–cloud collision. SOFIA-upGREAT 158 μm [C ii] archival data toward the northern part of Orion A are also compared to the 13CO data to test whether the position and velocity offsets between the emission from these two transitions resemble those predicted by a cloud–cloud collision model. We find that the northern part of Orion A, including regions ONC-OMC-1, OMC-2, OMC-3, and OMC-4, shows qualitative agreements with the cloud–cloud collision scenario, while in one of the southern regions, NGC 1999, there is no indication of such a process in causing the birth of new stars. On the other hand, another southern cluster, L 1641 N, shows slight tendencies of cloud–cloud collision. Overall, our results support the cloud–cloud collision process as being an important mechanism for star cluster formation in Orion A. 
    more » « less
  2. A faint star located 2 arcsec from KIC 8462852 was discovered in Keck 10 m adaptive optics imaging in the JHK near-infrared (NIR) in 2014 by Boyajian et al. (2016). The closeness of the star to KIC 8462852 suggested that the two could constitute a binary, which might have implications for the cause of the brightness dips seen by Kepler and in ground-based optical studies. Here, NIR imaging in 2017 using the Mimir instrument resolved the pair and enabled measuring their separation. The faint star had moved 67 ± 7 milliarcsec (mas) relative to KIC 8462852 since 2014. The relative proper motion of the faint star is 23.9 ± 2.6 mas yr-1, for a tangential velocity of 45 ± 5 km s-1 if it is at the same 390 pc distance as KIC 8462852. Circular velocity at the 750 au current projected separation is 1.5 km s-1, hence the star pair cannot be bound. 
    more » « less