skip to main content

Search for: All records

Award ID contains: 2034437

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light-curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases inmore »the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and a later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium.« less
  2. In a search for eclipsing white dwarfs using the Zwicky Transient Facility lightcurves, we identified a deep eclipsing white dwarf with a dark, substellar companion. The lack of an infrared excess and an orbital period of 10 hours made this a potential exoplanet candidate. We obtained high-speed photometry and radial velocity measurements to characterize the system. The white dwarf has a mass of 0.50±0.02M⊙ and a temperature of 10900±200K. The companion has a mass of 0.059±0.004M⊙ and a small radius of 0.0783±0.0013R⊙. It is one of the smallest transiting brown dwarfs known and likely old, ≳8Gyr. The ZTF discovery efficiencymore »of substellar objects transiting white dwarfs is limited by the number of epochs and as ZTF continues to collect data we expect to find more of these systems. This will allow us to measure period and mass distributions and allows us to understand the formation channels of white dwarfs with substellar companions.« less
  3. We present 42 rapidly evolving (time spent above half-maximum brightness t1/2<12d) extragalactic transients from Phase I of the Zwicky Transient Facility (ZTF), of which 22 have spectroscopic classifications. This is one of the largest systematically selected samples of day-timescale transients, and the first with spectroscopic classifications. Most can be classified as core-collapse supernovae (SNe), and we identify several predominant subtypes: (1) subluminous Type IIb or Type Ib SNe; (2) luminous Type Ibn or hybrid IIn/Ibn SNe; and (3) radio-loud, short-duration luminous events similar to AT2018cow. We conclude that rates quoted in the literature for rapidly evolving extragalactic transients are dominatedmore »by the subluminous events (mostly Type IIb SNe). From our spectroscopic classifications and radio, X-ray, and millimeter-band upper limits, we are motivated to consider the AT2018cow-like objects a distinct class, and use ZTF's systematic classification experiments to calculate that their rate does not exceed 0.1% of the local core-collapse SN rate, in agreement with previous work. By contrast, most other events are simply the extreme of a continuum of established SN types extending to ordinary timescales. The light curves of our objects are very similar to those of unclassified events in the literature, illustrating how spectroscopically classified samples of low-redshift objects in shallow surveys like ZTF can be used to photometrically classify larger numbers of events at higher redshift.« less
  4. In this work, we aimed to derive the gri-band period-luminosity (PL) and period-luminosity-color (PLC) relations for late-type contact binaries, for the first time, located in the globular clusters, using the homogeneous light curves collected by the Zwicky Transient Factory (ZTF). We started with 79 contact binaries in 15 globular clusters, and retained 30 contact binaries in 10 globular clusters that have adequate number of data points in the ZTF light curves and unaffected by blending. Magnitudes at mean and maximum light of these contact binaries were determined using a fourth-order Fourier expansion, while extinction corrections were done using the {\ttmore »Bayerstar2019} 3D reddening map together with adopting the homogeneous distances to their host globular clusters. After removing early-type and "anomaly" contact binaries, our derived gri-band PL and period-Wesenheit (PW) relations exhibit a much larger dispersion with large errors on the fitted coefficients. Nevertheless, the gr-band PL and PW relations based on this small sample of contact binaries in globular clusters were consistent with those based on a larger sample of nearby contact binaries. Good agreements of the PL and PW relations suggested both samples of contact binaries in the local Solar neighborhood and in the distant globular clusters can be combined and used to derive and calibrate the PL, PW and PLC relations. The final derived gr-band PL, PW and PLC relations were much improved than those based on the limited sample of contact binaries in the globular clusters.« less
  5. Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the universe. The duration and hardness distribution of GRBs has two clusters, now understood to reflect (at least) two different progenitors. Short-hard GRBs (SGRBs; T90 <2 s) arise from compact binary mergers, while long-soft GRBs (LGRBs; T90 >2 s) have been attributed to the collapse of peculiar massive stars (collapsars). The discovery of SN 1998bw/GRB 980425 marked the first association of a LGRB with a collapsar and AT 2017gfo/GRB 170817A/GW170817 marked the first association of a SGRB with a binary neutron star merger, producing also gravitational wave (GW).more »Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi Satellite and the InterPlanetary Network (IPN) localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova (KN), but is consistent with being the supernova (SN). Despite the GRB duration being short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirms a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets.« less
  6. Cometary activity is a manifestation of sublimation-driven processes at the surface of nuclei. However, cometary outbursts may arise from other processes that are not necessarily driven by volatiles. In order to fully understand nuclear surfaces and their evolution, we must identify the causes of cometary outbursts. In that context, we present a study of mini-outbursts of comet 46P/Wirtanen. Six events are found in our long-term lightcurve of the comet around its perihelion passage in 2018. The apparent strengths range from −0.2 to −1.6 mag in a 5" radius aperture, and correspond to dust masses between ∼104 to 106 kg, butmore »with large uncertainties due to the unknown grain size distributions. However, the nominal mass estimates are the same order of magnitude as the mini-outbursts at comet 9P/Tempel 1 and 67P/Churyumov-Gerasimenko, events which were notably lacking at comet 103P/Hartley 2. We compare the frequency of outbursts at the four comets, and suggest that the surface of 46P has large-scale (∼10-100 m) roughness that is intermediate to that of 67P and 103P, if not similar to the latter. The strength of the outbursts appear to be correlated with time since the last event, but a physical interpretation with respect to solar insolation is lacking. We also examine Hubble Space Telescope images taken about 2 days following a near-perihelion outburst. No evidence for macroscopic ejecta was found in the image, with a limiting radius of about 2-m.« less