skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2034437

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the tidal disruption event (TDE) AT2022lri, hosted in a nearby (≈144 Mpc) quiescent galaxy with a low-mass massive black hole (104M<MBH< 106M). AT2022lri belongs to the TDE-H+He subtype. More than 1 Ms of X-ray data were collected with NICER, Swift, and XMM-Newton from 187 to 672 days after peak. The X-ray luminosity gradually declined from 1.5 × 1044erg s−1to 1.5 × 1043erg s−1and remains much above the UV and optical luminosity, consistent with a super-Eddington accretion flow viewed face-on. Sporadic strong X-ray dips atop a long-term decline are observed, with a variability timescale of ≈0.5 hr–1 days and amplitude of ≈2–8. When fitted with simple continuum models, the X-ray spectrum is dominated by a thermal disk component with inner temperature going from ∼146 to ∼86 eV. However, there are residual features that peak around 1 keV, which, in some cases, cannot be reproduced by a single broad emission line. We analyzed a subset of time-resolved spectra with two physically motivated models describing a scenario either where ionized absorbers contribute extra absorption and emission lines or where disk reflection plays an important role. Both models provide good and statistically comparable fits, show that the X-ray dips are correlated with drops in the inner disk temperature, and require the existence of subrelativistic (0.1–0.3c) ionized outflows. We propose that the disk temperature fluctuation stems from episodic drops of the mass accretion rate triggered by magnetic instabilities or/and wobbling of the inner accretion disk along the black hole’s spin axis. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Abstract Galactic X-ray sources are diverse, ranging from active M dwarfs to compact object binaries, and everything in between. The X-ray landscape of today is rich, with point source catalogs such as those from XMM-Newton, Chandra, and Swift, each with ≳105sources and growing. Furthermore, X-ray astronomy is on the verge of being transformed through data releases from the all-sky SRG/eROSITA survey. Many X-ray sources can be associated with an optical counterpart, which in the era of Gaia, can be determined to be Galactic or extragalactic through parallax and proper motion information. Here, I present a simple diagram—the “X-ray Main Sequence,” which distinguishes between compact objects and active stars based on their optical color and X-ray-to-optical flux ratio (FX/Fopt). As a proof of concept, I present optical spectroscopy of six exotic accreting WDs discovered using the X-ray Main Sequence as applied to the XMM-Newton catalog. Looking ahead to surveys of the near future, I additionally present SDSS-V optical spectroscopy of new systems discovered using the X-ray Main Sequence as applied to the SRG/eROSITA eFEDS catalog. 
    more » « less
  3. Abstract The Bright Transient Survey (BTS) aims to obtain a classification spectrum for all bright (mpeak≤ 18.5 mag) extragalactic transients found in the Zwicky Transient Facility (ZTF) public survey. BTS critically relies on visual inspection (“scanning”) to select targets for spectroscopic follow-up, which, while effective, has required a significant time investment over the past ∼5 yr of ZTF operations. We presentBTSbot, a multimodal convolutional neural network, which provides a bright transient score to individual ZTF detections using their image data and 25 extracted features.BTSbotis able to eliminate the need for daily human scanning by automatically identifying and requesting spectroscopic follow-up observations of new bright transient candidates.BTSbotrecovers all bright transients in our test split and performs on par with scanners in terms of identification speed (on average, ∼1 hr quicker than scanners). We also find thatBTSbotis not significantly impacted by any data shift by comparing performance across a concealed test split and a sample of very recent BTS candidates.BTSbothas been integrated intoFritzandKowalski, ZTF’s first-party marshal and alert broker, and now sends automatic spectroscopic follow-up requests for the new transients it identifies. Between 2023 December and 2024 May,BTSbotselected 609 sources in real time, 96% of which were real extragalactic transients. WithBTSbotand other automation tools, the BTS workflow has produced the first fully automatic end-to-end discovery and classification of a transient, representing a significant reduction in the human time needed to scan. 
    more » « less
  4. ABSTRACT The identification of extragalactic fast optical transients (eFOTs) as potential multimessenger sources is one of the main challenges in time-domain astronomy. However, recent developments have allowed for probes of rapidly evolving transients. With the increasing number of alert streams from optical time-domain surveys, the next paradigm is building technologies to rapidly identify the most interesting transients for follow-up. One effort to make this possible is the fitting of objects to a variety of eFOT light curve models such as kilonovae and γ-ray burst (GRB) afterglows. In this work, we describe a new framework designed to efficiently fit transients to light curve models and flag them for further follow-up. We describe the pipeline’s workflow and a handful of performance metrics, including the nominal sampling time for each model. We highlight as examples ZTF20abwysqy, the shortest long gamma-ray burst discovered to date, and ZTF21abotose, a core-collapse supernova initially identified as a potential kilonova candidate. 
    more » « less
  5. Abstract Eruptive mass loss of massive stars prior to supernova (SN) explosion is key to understanding their evolution and end fate. An observational signature of pre-SN mass loss is the detection of an early, short-lived peak prior to the radioactive-powered peak in the lightcurve of the SN. This is usually attributed to the SN shock passing through an extended envelope or circumstellar medium. Such an early peak is common for double-peaked Type IIb SNe with an extended hydrogen envelope but uncommon for normal Type Ibc SNe with very compact progenitors. In this paper, we systematically study a sample of 14 double-peaked Type Ibc SNe out of 475 Type Ibc SNe detected by the Zwicky Transient Facility. The rate of these events is ∼3%–9% of Type Ibc SNe. A strong correlation is seen between the peak brightness of the first and the second peak. We perform a holistic analysis of this sample’s photometric and spectroscopic properties. We find that six SNe have ejecta mass less than 1.5M. Based on the nebular spectra and lightcurve properties, we estimate that the progenitor masses for these are less than ∼12M. The rest have an ejecta mass >2.4Mand a higher progenitor mass. This sample suggests that the SNe with low progenitor masses undergo late-time binary mass transfer. Meanwhile, the SNe with higher progenitor masses are consistent with wave-driven mass loss or pulsation-pair instability-driven mass-loss simulations. 
    more » « less
  6. Abstract We report the discovery of SDSS J022932.28+713002.7, a nascent extremely low-mass (ELM) white dwarf (WD) orbiting a massive (>1Mat 2σconfidence) companion with a period of 36 hr. We use a combination of spectroscopy, including data from the ongoing fifth-generation Sloan Digital Sky Survey (SDSS-V), and photometry to measure the stellar parameters of the primary pre-ELM WD. The lightcurve of the primary WD exhibits ellipsoidal variation, which we combine with radial velocity data andPHOEBEbinary simulations to estimate the mass of the invisible companion. We find that the primary WD has massM1= 0.18 0.02 + 0.02 Mand the unseen secondary has massM2= 1.19 0.14 + 0.21 M. The mass of the companion suggests that it is most likely a near-Chandrasekhar-mass WD or a neutron star. It is likely that the system recently went through a Roche lobe overflow from the visible primary onto the invisible secondary. The dynamical configuration of the binary is consistent with the theoretical evolutionary tracks for such objects, and the primary is currently in its contraction phase. The measured orbital period puts this system on a stable evolutionary path which, within a few gigayears, will lead to a contracted ELM WD orbiting a massive compact companion. 
    more » « less
  7. Abstract The classification of variable objects provides insight into a wide variety of astrophysics ranging from stellar interiors to galactic nuclei. The Zwicky Transient Facility (ZTF) provides time-series observations that record the variability of more than a billion sources. The scale of these data necessitates automated approaches to make a thorough analysis. Building on previous work, this paper reports the results of the ZTF Source Classification Project (SCoPe), which trains neural network and XGBoost (XGB) machine-learning (ML) algorithms to perform dichotomous classification of variable ZTF sources using a manually constructed training set containing 170,632 light curves. We find that several classifiers achieve high precision and recall scores, suggesting the reliability of their predictions for 209,991,147 light curves across 77 ZTF fields. We also identify the most important features for XGB classification and compare the performance of the two ML algorithms, finding a pattern of higher precision among XGB classifiers. The resulting classification catalog is available to the public, and the software developed forSCoPeis open source and adaptable to future time-domain surveys. 
    more » « less
  8. Abstract We present SN 2023zaw—a subluminous (Mr= −16.7 mag) and rapidly evolving supernova (t1/2,r= 4.9 days), with the lowest nickel mass (≈0.002M) measured among all stripped-envelope supernovae discovered to date. The photospheric spectra are dominated by broad Heiand Ca near-infrared emission lines with velocities of ∼10,000−12,000 km s−1. The late-time spectra show prominent narrow Heiemission lines at ∼1000 km s−1, indicative of interaction with He-rich circumstellar material. SN 2023zaw is located in the spiral arm of a star-forming galaxy. We perform radiation-hydrodynamical and analytical modeling of the lightcurve by fitting with a combination of shock-cooling emission and nickel decay. The progenitor has a best-fit envelope mass of ≈0.2Mand an envelope radius of ≈50R. The extremely low nickel mass and low ejecta mass (≈0.5M) suggest an ultrastripped SN, which originates from a mass-losing low-mass He-star (zero-age main-sequence mass < 10M) in a close binary system. This is a channel to form double neutron star systems, whose merger is detectable with LIGO. SN 2023zaw underscores the existence of a previously undiscovered population of extremely low nickel mass (<0.005M) stripped-envelope supernovae, which can be explored with deep and high-cadence transient surveys. 
    more » « less
  9. Abstract Optical surveys have become increasingly adept at identifying candidate tidal disruption events (TDEs) in large numbers, but classifying these generally requires extensive spectroscopic resources. Here we presenttdescore, a simple binary photometric classifier that is trained using a systematic census of ∼3000 nuclear transients from the Zwicky Transient Facility (ZTF). The sample is highly imbalanced, with TDEs representing ∼2% of the total.tdescoreis nonetheless able to reject non-TDEs with 99.6% accuracy, yielding a sample of probable TDEs with recall of 77.5% for a precision of 80.2%.tdescoreis thus substantially better than any available TDE photometric classifier scheme in the literature, with performance not far from spectroscopy as a method for classifying ZTF nuclear transients, despite relying solely on ZTF data and multiwavelength catalog cross matching. In a novel extension, we use “Shapley additive explanations” to provide a human-readable justification for each individualtdescoreclassification, enabling users to understand and form opinions about the underlying classifier reasoning.tdescorecan serve as a model for photometric identification of TDEs with time-domain surveys, such as the upcoming Rubin observatory. 
    more » « less
  10. Abstract During the first half of the fourth observing run (O4a) of the International Gravitational Wave Network, the Zwicky Transient Facility (ZTF) conducted a systematic search for kilonova (KN) counterparts to binary neutron star (BNS) and neutron star–black hole (NSBH) merger candidates. Here, we present a comprehensive study of the five high-significance (False Alarm Rate less than 1 yr−1) BNS and NSBH candidates in O4a. Our follow-up campaigns relied on both target-of-opportunity observations and re-weighting of the nominal survey schedule to maximize coverage. We describe the toolkit we have been developing,Fritz, an instance ofSkyPortal, instrumental in coordinating and managing our telescope scheduling, candidate vetting, and follow-up observations through a user-friendly interface. ZTF covered a total of 2841 deg2within the skymaps of the high-significance GW events, reaching a median depth ofg≈ 20.2 mag. We circulated 15 candidates, but found no viable KN counterpart to any of the GW events. Based on the ZTF non-detections of the high-significance events in O4a, we used a Bayesian approach,nimbus, to quantify the posterior probability of KN model parameters that are consistent with our non-detections. Our analysis favors KNe with initial absolute magnitude fainter than −16 mag. The joint posterior probability of a GW170817-like KN associated with all our O4a follow-ups was 64%. Additionally, we use a survey simulation software,simsurvey, to determine that our combined filtered efficiency to detect a GW170817-like KN is 36%, when considering the 5 confirmed astrophysical events in O3 (1 BNS and 4 NSBH events), along with our O4a follow-ups. Following Kasliwal et al., we derived joint constraints on the underlying KN luminosity function based on our O3 and O4a follow-ups, determining that no more than 76% of KNe fading at 1 mag day−1can peak at a magnitude brighter than −17.5 mag. 
    more » « less