skip to main content


Title: Six Outbursts of Comet 46P/Wirtanen
Cometary activity is a manifestation of sublimation-driven processes at the surface of nuclei. However, cometary outbursts may arise from other processes that are not necessarily driven by volatiles. In order to fully understand nuclear surfaces and their evolution, we must identify the causes of cometary outbursts. In that context, we present a study of mini-outbursts of comet 46P/Wirtanen. Six events are found in our long-term lightcurve of the comet around its perihelion passage in 2018. The apparent strengths range from −0.2 to −1.6 mag in a 5" radius aperture, and correspond to dust masses between ∼104 to 106 kg, but with large uncertainties due to the unknown grain size distributions. However, the nominal mass estimates are the same order of magnitude as the mini-outbursts at comet 9P/Tempel 1 and 67P/Churyumov-Gerasimenko, events which were notably lacking at comet 103P/Hartley 2. We compare the frequency of outbursts at the four comets, and suggest that the surface of 46P has large-scale (∼10-100 m) roughness that is intermediate to that of 67P and 103P, if not similar to the latter. The strength of the outbursts appear to be correlated with time since the last event, but a physical interpretation with respect to solar insolation is lacking. We also examine Hubble Space Telescope images taken about 2 days following a near-perihelion outburst. No evidence for macroscopic ejecta was found in the image, with a limiting radius of about 2-m.  more » « less
Award ID(s):
1440341 2034437
NSF-PAR ID:
10280435
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cometary activity is a manifestation of sublimation-driven processes at the surface of nuclei. However, cometary outbursts may arise from other processes that are not necessarily driven by volatiles. In order to fully understand nuclear surfaces and their evolution, we must identify the causes of cometary outbursts. In that context, we present a study of mini-outbursts of comet 46P/Wirtanen. Six events are found in our long-term lightcurve of the comet around its perihelion passage in 2018. The apparent strengths range from −0.2 to −1.6 mag in a 5″ radius aperture and correspond to dust masses between ∼104and 106kg, but with large uncertainties due to the unknown grain size distributions. However, the nominal mass estimates are on the same order of magnitude as the mini-outbursts at comet 9P/Tempel 1 and 67P/Churyumov-Gerasimenko, events that were notably lacking at comet 103P/Hartley 2. We compare the frequency of outbursts at the four comets, and suggest that the surface of 46P has large-scale (∼10–100 m) roughness that is intermediate to that of 67P and 103P, if not similar to the latter. The strength of the outbursts appear to be correlated with time since the last event, but a physical interpretation with respect to solar insolation is lacking. We also examine Hubble Space Telescope images taken about two days following a near-perihelion outburst. No evidence for macroscopic ejecta was found in the image, with a limiting radius of about 2 m.

     
    more » « less
  2. Abstract

    High-resolution near-infrared ground-based spectroscopic observations of comet 67P/Churyumov–Gerasimenko near its maximum activity in 2021 were conducted from the W. M. Keck Observatory, using the facility spectrograph NIRSPEC. 67P is the best-studied comet to date because of the unprecedented detail and insights provided by the Rosetta mission during 2014–2016. Because 67P is the only comet where the detailed abundances of many coma volatiles were measured in situ, determining its composition from the ground provides a unique opportunity to interpret Rosetta results within the context of the large database of ground-based compositional measurements of comets. However, previous apparitions, including in 2015, have been unfavorable for in-depth ground-based studies of parent volatiles in 67P. The 2021 apparition of 67P was thus the first-ever opportunity for such observations. We report gas spatial distributions, rotational temperatures, production rates, and relative abundances (or stringent upper limits) among seven volatile species: C2H2, C2H6, HCN, NH3, CH3OH, H2CO, and H2O. The measured abundances of trace species relative to water reveal near average or below average values compared to previous comets studied at infrared wavelengths. Both gas rotational temperatures and the spatial distributions of H2O, C2H6, and HCN measured with Keck-NIRSPEC in 2021 are consistent with the outgassing patterns revealed by Rosetta in 2015 at very similar heliocentric distance  (post-perihelion). These results can be integrated with both Rosetta mission findings and ground-based cometary studies of the overall comet population, for which we encourage a wide-scale collaboration across measurement techniques.

     
    more » « less
  3. We present the results of a molecular survey of comet 67P/Churyumov-Gerasimenko undertaken with the Institut de RadioAstronomie Millimétrique (IRAM) 30-m radio telescope in November–December 2021, when it had its most favourable apparition in decades. Observations at IRAM 30-m during the 12–16 November period covered 8 GHz bandwidth at 3 mm, 16 GHz at 2 mm, and 60 GHz in the 1 mm window domain. These were completed by snapshots at 1 mm on 12–13 December and a short observation of the H 2 O line at 557 GHz with the Odin sub-millimetre observatory on 17.0 November 2021, and with 18-cm observations of OH with the Nançay radio telescope. Less sensitive observations obtained at a previous perihelion passage on 18–22 September 2015 with IRAM and 9–12 November 2015 with Odin are also presented. The gas outflow velocity, outgassing pattern, and temperature have been accurately constrained by the observations. They are perfectly consistent with those measured in situ with the Rosetta/MIRO sub-millimetre instrument in 2015. In particular, the asymmetry of the line is well represented by a jet concentrating three-quarters of the outgassing in about π steradians. We derived abundances relative to water for seven molecules and significant upper limits for approximately five others. The retrieved abundances were compared to those measured in situ at the previous perihelion with Rosetta. While those of HCN, CH 3 OH, and HNCO are comparable, 67P is found to be depleted in H 2 S and relatively normal in CS (H 2 S/CS ≈ 3) in strong contradiction with the Rosetta/ROSINA mass spectrometer measurement of the H 2 S/CS 2 (≈100) abundance ratio. While the formaldehyde total abundance found with IRAM 30-m when assuming it to be mostly produced by a distributed source (Haser parent scale length ≈8000 km) is similar to the one derived by Rosetta/ROSINA, we find that the formaldehyde coming from the nucleus is one order of magnitude less abundant than measured in situ by Rosetta/ROSINA. 
    more » « less
  4. Abstract

    Gas-phase molecules in cometary atmospheres (comae) originate primarily from (1) outgassing by the nucleus, (2) sublimation of icy grains in the near-nucleus coma, and (3) coma (photo)chemical processes. However, the majority of cometary gases observed at radio wavelengths have yet to be mapped, so their production/release mechanisms remain uncertain. Here we present observations of six molecular species toward comet 46P/Wirtanen, obtained using the Atacama Large Millimeter/submillimeter Array during the comet’s unusually close (∼0.1 au) approach to Earth in 2018 December. Interferometric maps of HCN, CH3OH, CH3CN, H2CO, CS, and HNC were obtained at an unprecedented sky-projected spatial resolution of up to 25 km, enabling the nucleus and coma sources of these molecules to be accurately quantified. The HCN, CH3OH, and CH3CN spatial distributions are consistent with production by direct outgassing from (or very close to) the nucleus, with a significant proportion of the observed CH3OH originating from sublimation of icy grains in the near-nucleus coma (at a scale lengthLp= 36 ± 7 km). On the other hand, H2CO, CS, and HNC originate primarily from distributed coma sources (withLpvalues in the range 550–16,000 km), the identities of which remain to be established. The HCN, CH3OH, and HNC abundances in 46P are consistent with the average values previously observed in comets, whereas the H2CO, CH3CN, and CS abundances are relatively low.

     
    more » « less
  5. Abstract

    We report a statistically significant detection of nongravitational acceleration on the subkilometer near-Earth asteroid (523599) 2003 RM. Due to its orbit, 2003 RM experiences favorable observing apparitions every 5 yr. Thus, since its discovery, 2003 RM has been extensively tracked with ground-based optical facilities in 2003, 2008, 2013, and 2018. We find that the observed plane-of-sky positions cannot be explained with a purely gravity-driven trajectory. Including a transverse nongravitational acceleration allows us to match all observational data, but its magnitude is inconsistent with perturbations typical of asteroids such as the Yarkovsky effect or solar radiation pressure. After ruling out that the orbital deviations are due to a close approach or collision with another asteroid, we hypothesize that this anomalous acceleration is caused by unseen cometary outgassing. A detailed search for evidence of cometary activity with archival and deep observations from the Panoramic Survey Telescope and Rapid Response System and the Very Large Telescope does not reveal any detectable dust production. However, the best-fitting H2O sublimation model allows for brightening due to activity consistent with the scatter of the data. We estimate the production rate required for H2O outgassing to power the acceleration and find that, assuming a diameter of 300 m, 2003 RM would require Q(H2O) ∼ 1023molec s−1at perihelion. We investigate the recent dynamical history of 2003 RM and find that the object most likely originated in the mid-to-outer main belt (∼86% probability) as opposed to from the Jupiter-family comet region (∼11% probability). Further observations, especially in the infrared, could shed light on the nature of this anomalous acceleration.

     
    more » « less