skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SN 2018ijp: the explosion of a stripped-envelope star within a dense H-rich shell?
In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light-curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases in the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and a later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium.  more » « less
Award ID(s):
1440341 2034437
PAR ID:
10280447
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
650
ISSN:
0004-6361
Page Range / eLocation ID:
A174
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multipeaked supernovae with precursors, dramatic light-curve rebrightenings, and spectral transformation are rare, but are being discovered in increasing numbers by modern night-sky transient surveys like the Zwicky Transient Facility. Here, we present the observations and analysis of SN 2023aew, which showed a dramatic increase in brightness following an initial luminous (−17.4 mag) and long (∼100 days) unusual first peak (possibly precursor). SN 2023aew was classified as a Type IIb supernova during the first peak but changed its type to resemble a stripped-envelope supernova (SESN) after the marked rebrightening. We present comparisons of SN 2023aew’s spectral evolution with SESN subtypes and argue that it is similar to SNe Ibc during its main peak. P-Cygni Balmer lines are present during the first peak, but vanish during the second peak’s photospheric phase, before Hαresurfaces again during the nebular phase. The nebular lines ([Oi], [Caii], Mgi], Hα) exhibit a double-peaked structure that hints toward a clumpy or nonspherical ejecta. We analyze the second peak in the light curve of SN 2023aew and find it to be broader than that of normal SESNe as well as requiring a very high56Ni mass to power the peak luminosity. We discuss the possible origins of SN 2023aew including an eruption scenario where a part of the envelope is ejected during the first peak and also powers the second peak of the light curve through interaction of the SN with the circumstellar medium. 
    more » « less
  2. ABSTRACT A rare class of supernovae (SNe) is characterized by strong interaction between the ejecta and several solar masses of circumstellar matter (CSM) as evidenced by strong Balmer-line emission. Within the first few weeks after the explosion, they may display spectral features similar to overluminous Type Ia SNe, while at later phase their observation properties exhibit remarkable similarities with some extreme case of Type IIn SNe that show strong Balmer lines years after the explosion. We present polarimetric observations of SN 2018evt obtained by the ESO Very Large Telescope from 172 to 219 d after the estimated time of peak luminosity to study the geometry of the CSM. The non-zero continuum polarization decreases over time, suggesting that the mass-loss of the progenitor star is aspherical. The prominent H α emission can be decomposed into a broad, time-evolving component and an intermediate-width, static component. The former shows polarized signals, and it is likely to arise from a cold dense shell (CDS) within the region between the forward and reverse shocks. The latter is significantly unpolarized, and it is likely to arise from shocked, fragmented gas clouds in the H-rich CSM. We infer that SN 2018evt exploded inside a massive and aspherical circumstellar cloud. The symmetry axes of the CSM and the SN appear to be similar. SN 2018evt shows observational properties common to events that display strong interaction between the ejecta and CSM, implying that they share similar circumstellar configurations. Our preliminary estimate also suggests that the circumstellar environment of SN 2018evt has been significantly enriched at a rate of ∼0.1 M⊙ yr−1 over a period of >100 yr. 
    more » « less
  3. In this paper we report the results of the first ~four years of spectroscopic and photometric monitoring of the Type IIn supernova SN 2015da (also known as PSN J13522411+3941286, or iPTF16tu). The supernova exploded in the nearby spiral galaxy NGC 5337 in a relatively highly extinguished environment. The transient showed prominent narrow Balmer lines in emission at all times and a slow rise to maximum in all bands. In addition, early observations performed by amateur astronomers give a very well-constrained explosion epoch. The observables are consistent with continuous interaction between the supernova ejecta and a dense and extended H-rich circumstellar medium. The presence of such an extended and dense medium is difficult to reconcile with standard stellar evolution models, since the metallicity at the position of SN 2015da seems to be slightly subsolar. Interaction is likely the mechanism powering the light curve, as confirmed by the analysis of the pseudo bolometric light curve, which gives a total radiated energy ≳ 10 51 erg. Modeling the light curve in the context of a supernova shock breakout through a dense circumstellar medium allowed us to infer the mass of the prexisting gas to be ≃ 8 M ⊙ , with an extreme mass-loss rate for the progenitor star ≃0.6 M ⊙ yr −1 , suggesting that most of the circumstellar gas was produced during multiple eruptive events. Near- and mid-infrared observations reveal a fluxexcess in these domains, similar to those observed in SN 2010jl and other interacting transients, likely due to preexisting radiatively heated dust surrounding the supernova. By modeling the infrared excess, we infer a mass ≳ 0.4 × 10 −3 M ⊙ for the dust. 
    more » « less
  4. Abstract We present observations of SN 2021csp, the second example of a newly identified type of supernova (SN) hallmarked by strong, narrow, P Cygni carbon features at early times (Type Icn). The SN appears as a fast and luminous blue transient at early times, reaching a peak absolute magnitude of −20 within 3 days due to strong interaction between fast SN ejecta ( v ≈ 30,000 km s −1 ) and a massive, dense, fast-moving C/O wind shed by the WC-like progenitor months before explosion. The narrow-line features disappear from the spectrum 10–20 days after explosion and are replaced by a blue continuum dominated by broad Fe features, reminiscent of Type Ibn and IIn supernovae and indicative of weaker interaction with more extended H/He-poor material. The transient then abruptly fades ∼60 days post-explosion when interaction ceases. Deep limits at later phases suggest minimal heavy-element nucleosynthesis, a low ejecta mass, or both, and imply an origin distinct from that of classical Type Ic SNe. We place SN 2021csp in context with other fast-evolving interacting transients, and discuss various progenitor scenarios: an ultrastripped progenitor star, a pulsational pair-instability eruption, or a jet-driven fallback SN from a Wolf–Rayet (W-R) star. The fallback scenario would naturally explain the similarity between these events and radio-loud fast transients, and suggests a picture in which most stars massive enough to undergo a W-R phase collapse directly to black holes at the end of their lives. 
    more » « less
  5. Abstract We present the photometric and spectroscopic evolution of SN 2022oqm, a nearby multipeaked hydrogen- and helium-weak calcium-rich transient (CaRT). SN 2022oqm was detected 13.1 kpc from its host galaxy, the face-on spiral galaxy NGC 5875. Extensive spectroscopic coverage reveals an early hot (T≥ 40,000 K) continuum and carbon features observed ∼1 day after discovery, SN Ic-like photospheric-phase spectra, and strong forbidden calcium emission starting 38 days after discovery. SN 2022oqm has a relatively high peak luminosity (MB= −17 mag) for CaRTs, making it an outlier in the population. We determine that three power sources are necessary to explain the light curve (LC), with each corresponding to a distinct peak. The first peak is powered by an expanding blackbody with a power-law luminosity, suggesting shock cooling by circumstellar material (CSM). Subsequent LC evolution is powered by a double radioactive decay model, consistent with two sources of photons diffusing through optically thick ejecta. From the LC, we derive an ejecta mass and56Ni mass of ∼0.6Mand ∼0.09M. Spectroscopic modeling ∼0.6Mof ejecta, and with well-mixed Fe-peak elements throughout. We discuss several physical origins for SN 2022oqm and find either a surprisingly massive white dwarf progenitor or a peculiar stripped envelope model could explain SN 2022oqm. A stripped envelope explosion inside a dense, hydrogen- and helium-poor CSM, akin to SNe Icn, but with a large 56Ni mass and small CSM mass could explain SN 2022oqm. Alternatively, helium detonation on an unexpectedly massive white dwarf could also explain SN 2022oqm. 
    more » « less