Academic bridge courses are implemented to impact students’ academic success by revising fundamental concepts and skills necessary to successfully complete discipline-specific courses. The bridge courses are often short (one to three weeks) and highly dense in content (commonly mathematics or math-related applications). With the support of the NSF-funded (DUE - Division of Undergraduate Education) STEM Center at Sam Houston State University (SHSU), we designed a course for upcoming engineering majors (i.e., first-year students and transfer students) that consists of a two-week-long pre-semester course organized into two main sessions. The first sessions (delivered in the mornings) were synchronous activities focused on strengthening student academic preparedness and socio-academic integration and fostering networking leading to a strong STEM learning community. The second sessions (delivered in the afternoons) were asynchronous activities focused on discipline-specific content knowledge in engineering. The engineering concepts were organized via eight learning modules covering basic math operations, applied trigonometry, functions in engineering, applied physics, introduction to statics and Microsoft Excel, and engineering economics and its applied decision. All materials in the course were designed by engineering faculty (from the chair of the department to assistant professors and lecturers in engineering) and one educational research faculty (from the department of chemistry).more »
Meeting report – NSF-sponsored workshop ‘Progress and Prospects of Single-Molecule Force Spectroscopy in Biological and Chemical Sciences’
ABSTRACT The goals of the workshop organized by Piotr Marszalek and Andres Oberhauser that took place between 29 August and 1 September 2019 at Duke University were to bring together leading experts and junior researchers to review past accomplishments, recent advances and limitations in the single-molecule force spectroscopy field, which examines nanomechanical forces in diverse biological processes and pathologies. Talks were organized into four sessions, and two in-depth roundtable discussion sessions were held.
- Award ID(s):
- 1817556
- Publication Date:
- NSF-PAR ID:
- 10280496
- Journal Name:
- Journal of Cell Science
- Volume:
- 133
- Issue:
- 16
- ISSN:
- 0021-9533
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Research shows that there is a growing need for skilled workers in the area of advanced manufacturing; this refers to making use of new technologies and advanced processes to produce products that have high value. More importantly, U.S. government employment data reveals that there is lack of supply of skilled workers in the manufacturing sector. Furthermore, it has also been widely cited in industrial literature that there is a concern regarding the job readiness of fresh college graduates and the gaps in skills sets needed to be successful in an industrial setting, especially in the engineering or manufacturing fields. One approach to bridge the skills gap is to provide customized continuing education to current the workforce as per the industry need. This paper presents a case study of such customized continuing education offered by Texas A&M University for oil and gas industry in Houston, Texas. Specifically, as a part of National Science Foundation Advanced Technological Education project, two professional development sessions were organized in the summer of 2018 in Houston targeting the energy industry. Both programs were two-days long and focused on two key aspects of high value manufacturing: manufacturing operations excellence and manufacturing quality excellence. The professional development sessionsmore »
-
Light microscopy provides a window into another world that is not visible to the unaided eye. Because of this and its importance in biological discoveries, the light microscope is an essential tool for scientific studies. It can also be used with a variety of easily obtained specimens to provide dramatic demonstrations of previously unknown features of common plants and animals. Thus, one way to interest young people in science is to start with an introduction to light microscopy. This is an especially effective strategy for individuals who attend less advantaged or under-resourced schools, as they may not have been previously exposed to scientific concepts in their classes. However, introducing light microscopy lessons in the classroom can be challenging because of the high cost of light microscopes, even those that are relatively basic, in addition to their usual large size. Efforts are underway by our laboratory in collaboration with the Biophysical Society (BPS) to introduce young people to light microscopy using small, easy-to-assemble wooden microscopes developed by Echo Laboratories. The microscopes are available online as low-cost kits ($10 each with shipping), each consisting of 19 parts printed onto an 81⁄2 x 11 inch sheet of light-weight wood (Fig. 1). After punchingmore »
-
There has been growing evidence that flipped teaching (FT) can increase student engagement. Traditional lecture-based teaching (TT) method was compared with FT and FT combined with retrieval practice (FTR) in a 400-level Exercise Physiology course over eight semesters. In the FT format, lecture content was assigned for students to prepare before class along with an online quiz. During class, the assigned content and quiz questions were reviewed, and a team-based learning (TBL) activity was conducted. Students found FT implementation three times a week (FT3) to be overwhelming, which led to reconfiguration of the FT design to minimize the quiz and TBL sessions to one per week. Subsequently, FT was combined with retrieval exercises (FTR), which involved recalling information, thus promoting retention. The students in the FTR format were given weekly quizzes in class, where no notes were allowed, which affected their quiz grade negatively compared with FT ( P < 0.0001). Again, no resources were permitted during FTR’s TBL sessions. When exam scores were compared with TT, student performance was significantly greater ( P < 0.001) with the FT and FTR methods, suggesting these methods are superior to TT. While both male and female students benefited from FT and FTRmore »
-
Two sessions were organized during the 2018 Fall AGU Meeting entitled, (1) Coastal Response to Extreme Events: Fidelity of Model Predictions of Surge, Inundation, and Morphodynamics and (2) Improved Observational and Modeling Skills to Understand the Hurricane and Winter Storm Induced Surge and Meteotsunami. The focus of these sessions was on examining the impact of natural disasters on estuarine and coastal regions worldwide, including the islands and mainland in the northwestern Atlantic and the northwestern Pacific. The key research interests are the investigations on the regional dynamics of storm surges, coastal inundations, waves, tides, currents, sea surface temperatures, storm inundations and coastal morphology using both numerical models and observations during tropical and extratropical cyclones. This Special Issue (SI) ‘Estuarine and coastal natural hazards’ in Estuarine Coastal and Shelf Science is an outcome of the talks presented at these two sessions. Five themes are considered (effects of storms of wave dynamics; tide and storm surge simulations; wave-current interaction during typhoons; wave effects on storm surges and hydrodynamics; hydrodynamic and morphodynamic responses to typhoons), arguably reflecting areas of greatest interest to researchers and policy makers. This synopsis of the articles published in the SI allows us to obtain a better understanding ofmore »