skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing the performance of the bootstrap in simulated assemblage networks
Archaeologists are increasingly interested in networks constructed from site assemblage data, in which weighted network ties reflect sites’ assemblage similarity. Equivalent networks would arise in other scientific fields where actors’ similarity is assessed by comparing distributions of observed counts, so the assemblages studied here can represent other kinds of distributions in other domains. One concern with such work is that sampling variability in the assemblage network and, in turn, sampling variability in measures calculated from the network must be recognized in any comprehensive analysis. In this study, we investigated the use of the bootstrap as a means of estimating sampling variability in measures of assemblage networks. We evaluated the performance of the bootstrap in simulated assemblage networks, using a probability structure based on the actual distribution of sherds of ceramic wares in a region with 25 archaeological sites. Results indicated that the bootstrap was successful in estimating the true sampling variability of eigenvector centrality for the 25 sites. This held both for centrality scores and for centrality ranks, as well as the ratio of first to second eigenvalues of the network (similarity) matrix. Findings encourage the use of the bootstrap as a tool in analyses of network data derived from counts.  more » « less
Award ID(s):
1758690 1758606 1738245
PAR ID:
10280572
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Social Networks
Volume:
65
ISSN:
0378-8733
Page Range / eLocation ID:
98-109
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this paper is to use graph theory network measures derived from non-invasive electroencephalography (EEG) to develop neural decoders that can differentiate Parkinson's disease (PD) patients from healthy controls (HC). EEG signals from 27 patients and 27 demographically matched controls from New Mexico were analyzed by estimating their functional networks. Data recorded from the patients during ON and OFF levodopa sessions were included in the analysis for comparison. We used betweenness centrality of estimated functional networks to classify the HC and PD groups. The classifiers were evaluated using leave-one-out cross-validation. We observed that the PD patients (on and off medication) could be distinguished from healthy controls with 89% accuracy – approximately 4% higher than the state-of-the-art on the same dataset. This work shows that brain network analysis using extracranial resting-state EEG can discover patterns of interactions indicative of PD. This approach can also be extended to other neurological disorders. 
    more » « less
  2. The National Ecological Observation Network (NEON) is a thirty-year, open-source, continental-scale ecological observation platform. The objective of the NEON project is to provide data to facilitate the understanding and forecasting of the ecological impacts of anthropogenic change at a continental scale. Fish are sentinel taxa in freshwater systems, and the NEON has been sampling and collecting fish assemblage data at wadable stream sites for six years. One to two NEON wadable stream sites are located in sixteen domains from Alaska to Puerto Rico. The goal of site selection was that sites represent local conditions but with the intention that site data be analyzed at a continental observatory level. Site selection did not include fish assemblage criteria. Without using fish assemblage criteria, anomalies in fish assemblages at the site level may skew the expected spatial patterns of North American stream fish assemblages, thereby hindering change detection in subsequent years. However, if NEON stream sites are representative of the current spatial distributions of North American stream fish assemblages, we could expect to find the most diverse sites in Atlantic drainages and the most depauperate sites in Pacific drainages. Therefore, we calculated the alpha and regional (beta) diversities of wadable stream sites to highlight spatial patterns. As expected, NEON sites followed predictable spatial diversity patterns, which could facilitate future change detection and attribution to changes in environmental drivers, if any. 
    more » « less
  3. Choosing effective methods to restore habitat for the diverse faunal assemblages of tropical forests is hampered by lack of long-term data comparing multiple restoration treatments. We conducted area counts of bird assemblages over 12 years (~5–17 years since restoration) in a blocked experiment with two active planted treatments (tree plantations and applied nucleation) and a passive restoration treatment (natural regeneration) replicated at 11 sites in Costa Rica. We also surveyed six pastures and five remnant forest sites to assess recovery of avian species richness, composition, forest specialists, and range-restricted species in restoration plots relative to degraded and reference systems. Restoration treatments showed increased resemblance of avian assemblages to remnant forest over time. Applied nucleation proved equally effective as plantation, despite a reduced planted area, whereas natural regeneration recovered more slowly. Assemblage-level trends in avian species richness and compositional similarity to reference forest are underpinned by reductions in use by pasture birds and by gradual increases in richness of forest-affiliated species. Because forest-affiliated species tend to have narrower distributions than the open-country species they replace, forest restoration can reduce biotic homogenization at the local scale. Restoration practitioners should consider applied nucleation as an alternative to standard plantations if seeking rapid recovery of bird assemblages. However, the ecological return on investment from natural regeneration increases over a couple of decades. Managers should monitor trends in forest-affiliated and rangerestricted species to track the recovery of the full avian assemblages, since coarse metrics like species richness and overall compositional similarity may plateau relatively quickly 
    more » « less
  4. Abstract Inclusion of edaphic conditions in biogeographical studies typically provides a better fit and deeper understanding of plant distributions. Increased reliance on soil data calls for easily accessible data layers providing continuous soil predictions worldwide. Although SoilGrids provides a potentially useful source of predicted soil data for biogeographic applications, its accuracy for estimating the soil characteristics experienced by individuals in small‐scale populations is unclear. We used a biogeographic sampling approach to obtain soil samples from 212 sites across the midwestern and eastern United States, sampling only at sites where there was a population of one of the 22 species inLobeliasect.Lobelia. We analyzed six physical and chemical characteristics in our samples and compared them with predicted values from SoilGrids. Across all sites and species, soil texture variables (clay, silt, sand) were better predicted by SoilGrids (R2: .25–.46) than were soil chemistry variables (carbon and nitrogen,R2 ≤ .01; pH,R2: .19). While SoilGrids predictions rarely matched actual field values for any variable, we were able to recover qualitative patterns relating species means and population‐level plant characteristics to soil texture and pH. Rank order of species mean values from SoilGrids and direct measures were much more consistent for soil texture (SpearmanrS = .74–.84; allp < .0001) and pH (rS = .61,p = .002) than for carbon and nitrogen (p > .35). Within the speciesL. siphilitica, a significant association, known from field measurements, between soil texture and population sex ratios could be detected using SoilGrids data, but only with large numbers of sites. Our results suggest that modeled soil texture values can be used with caution in biogeographic applications, such as species distribution modeling, but that soil carbon and nitrogen contents are currently unreliable, at least in the region studied here. 
    more » « less
  5. Abstract Network methods have seen a rapid rise in archaeology in recent years. There are still concerns regarding how well formal networks are able to effectively model local interaction. These are often present in the so-called qualitative network approaches—studies that tend to be based on close readings of relations between entities and the way they form dynamic networks of agents. Such studies have demonstrated the value in scrutinizing the way in which relations might be acted on in practice, and how that might differ from expected results. But rarely do such studies produce network data of the kind analyzed by formal network analytical methods. Formal approaches, on the other hand, blur the specificity of individual relations and trade much of their specificity for the ability to make general statements about relations across large datasets. More generally, the modality of the relation/edge is a crucial way in which formal network analysis differs from other prevalent relational approaches popular in archaeology today, where the substantivity of individual relations is paramount. Such relations are often seen as starting points for subsequent hybridizations that radically alter, if only temporarily, the structure of their respective networks. I argue that a key step in allowing networks to reformulate from initial, data-driven network schemata is the introduction of a more symmetrical agency between the node and the edge. In this article, I discuss how ethnographic sources can be used to achieve this for archaeological survey data. I use assemblage theory as a framework to explore the potential the edge has to offer archaeological network modelling. While assemblage theory is helpful for this purpose, the lack of a computational formality to assemblage theory immediately places it at odds with network science. As a complement, I will also employ the computational ontology CIDOC-CRM to more explicitly articulate the character of links between nodes in archaeological networks. The paper will end by suggesting a method of network modelling which integrates the line as a key source of agency. As a nod to Ingold’s call for an increased emphasis on the line, I call this approach network linaeology. 
    more » « less