skip to main content

Title: Multiepoch VLT–FORS spectropolarimetric observations of supernova 2012aw reveal an asymmetric explosion
We present VLT–FORS spectropolarimetric observations of the type II supernova (SN) 2012aw taken at seven epochs during the photospheric phase, from 16 to 120 d after explosion. We corrected for interstellar polarization by postulating that the SN polarization is naught near the rest wavelength of the strongest lines – this is later confirmed by our modeling. SN 2012aw exhibits intrinsic polarization, with strong variations across lines, and with a magnitude that grows in the 7000 Å line-free region from 0.1% at 16 d up to 1.2% at 120 d. This behavior is qualitatively similar to observations gathered for other type II SNe. A suitable rotation of Stokes vectors places the bulk of the polarization in q , suggesting the ejecta of SN 2012aw is predominantly axisymmetric. Using an upgraded version of our 2D polarized radiative transfer code, we modeled the wavelength- and time-dependent polarization of SN 2012aw. The key observables may be explained by the presence of a confined region of enhanced 56 Ni at ~4000 km s −1 , which boosts the electron density in a cone having an opening angle of ~50 deg and an observer’s inclination of ~70 deg to the axis of symmetry. With this fixed more » asymmetry in time, the observed evolution of the SN 2012aw polarization arises from the evolution of the ejecta optical depth, ionization, and the relative importance of multiple versus single scattering. However, the polarization signatures exhibit numerous degeneracies. Cancellation effects at early times imply that low polarization may even occur for ejecta with a large asymmetry. An axisymmetric ejecta with a latitudinal-dependent explosion energy can also yield similar polarization signatures as asymmetry in the 56 Ni distribution. In spite of these uncertainties, SN 2012aw provides additional evidence for the generic asymmetry of type II SN ejecta, of which VLT–FORS spectropolarimetric observations are a decisive and exquisite probe. « less
Authors:
; ; ;
Award ID(s):
2010001
Publication Date:
NSF-PAR ID:
10280598
Journal Name:
Astronomy & Astrophysics
Volume:
651
Page Range or eLocation-ID:
A19
ISSN:
0004-6361
Sponsoring Org:
National Science Foundation
More Like this
  1. Type II supernovae (SNe) often exhibit a linear polarization, arising from free-electron scattering, with complicated optical signatures, both in the continuum and in lines. Focusing on the early nebular phase, at a SN age of 200 d, we conduct a systematic study of the polarization signatures associated with a 56 Ni “blob” that breaks spherical symmetry. Our ansatz, supported by nonlocal thermodynamic equilibrium radiative transfer calculations, is that the primary role of such a 56 Ni blob is to boost the local density of free electrons, which is otherwise reduced following recombination in Type II SN ejecta. Using 2D polarized radiation transfer modeling, we explore the influence of such an electron-density enhancement, varying its magnitude N e, fac , its velocity location V blob , and its spatial extent. For plausible N e, fac values of a few tens, a high-velocity blob can deliver a continuum polarization P cont of 0.5–1.0% at 200 d. Our simulations reproduce the analytic scalings for P cont , and in particular the linear growth with the blob radial optical depth. The most constraining information is, however, carried by polarized line photons. For a high V blob , the polarized spectrum appears as a replicamore »of the full spectrum, scaled down by a factor of 100–1000 (i.e., 1∕ P cont ) and redshifted by an amount V blob (1 − cos α los ), where α los is the line-of-sight angle. As V blob is reduced, the redshift decreases and the replication deteriorates. Lines whose formation region overlaps with the blob appear weaker and narrower in the polarized flux. Because of its dependence on inclination (∝ sin 2 α los ), the polarization preferentially reveals asymmetries in the plane perpendicular to the line-of-sight ( α los = 90 deg). This property also weakens the broadening of lines in the polarized flux. With the adequate choice of electron-density enhancement, some of these results may apply to asymmetric explosions in general or to the polarization signatures from newly formed dust in the outer ejecta.« less
  2. ABSTRACT Detailed spectropolarimetric studies may hold the key to probing the explosion mechanisms and the progenitor scenarios of Type Ia supernovae (SNe Ia). We present multi-epoch spectropolarimetry and imaging polarimetry of SN 2019ein, an SN Ia showing high expansion velocities at early phases. The spectropolarimetry sequence spans from ∼−11 to +10 d relative to peak brightness in the B band. We find that the level of the continuum polarization of SN 2019ein, after subtracting estimated interstellar polarization, is in the range 0.0–0.3 per cent, typical for SNe Ia. The polarization position angle remains roughly constant before and after the SN light-curve peak, implying that the inner regions share the same axisymmetry as the outer layers. We observe high polarization (∼1 per cent) across both the Si ii λ6355 and Ca ii near-infrared triplet features. These two lines also display complex polarization modulations. The spectropolarimetric properties of SN 2019ein rule out a significant departure from spherical symmetry of the ejecta for up to a month after the explosion. These observations disfavour merger-induced and double-detonation models for SN 2019ein. The imaging polarimetry shows weak evidence for a modest increase in polarization after ∼20 d since the B-band maximum. If this rise is real and is observed in other SNe Ia at similar phases, we may havemore »seen, for the first time, an aspherical interior similar to what has been previously observed for SNe IIP. Future polarization observations of SNe Ia extending to post-peak epochs will help to examine the inner structure of the explosion.« less
  3. ABSTRACT We present photometry, spectra, and spectropolarimetry of supernova (SN) 2014ab, obtained through ∼200 d after peak brightness. SN 2014ab was a luminous Type IIn SN (MV < −19.14 mag) discovered after peak brightness near the nucleus of its host galaxy, VV 306c. Pre-discovery upper limits constrain the time of explosion to within 200 d prior to discovery. While SN 2014ab declined by ∼1 mag over the course of our observations, the observed spectrum remained remarkably unchanged. Spectra exhibit an asymmetric emission-line profile with a consistently stronger blueshifted component, suggesting the presence of dust or a lack of symmetry between the far side and near side of the SN. The Pa β emission line shows a profile very similar to that of H α, implying that this stronger blueshifted component is caused either through obscuration by large dust grains, occultation by optically thick material, or a lack of symmetry between the far side and near side of the interaction region. Despite these asymmetric line profiles, our spectropolarimetric data show that SN 2014ab has little detected polarization after accounting for the interstellar polarization. We are likely seeing emission from a photosphere that has only small deviation from circular symmetry in the plane normal to our line of sight, but with eithermore »large-grain dust or significant asymmetry in the density of circumstellar material or SN ejecta along our line of sight. We suggest that SN 2014ab and SN 2010jl (as well as other SNe IIn) may be events with similar geometry viewed from different directions.« less
  4. The non-detection of companion stars in Type Ia supernova (SN) progenitor systems lends support to the notion of double-degenerate (DD) systems and explosions triggered by the merging of two white dwarfs. This very asymmetric process should lead to a conspicuous polarimetric signature. By contrast, observations consistently find very low continuum polarization as the signatures from the explosion process largely dominate over the pre-explosion configuration within several days. Critical information about the interaction of the ejecta with a companion and any circumstellar matter is encoded in the early polarization spectra. In this study, we obtain spectropolarimetry of SN\,2018gv with the ESO Very Large Telescope at − 13.6 days relative to the B−band maximum light, or ∼ 5 days after the estimated explosion --- the earliest spectropolarimetric observations to date of any Type Ia SN. These early observations still show a low continuum polarization ( ≲ 0.2\%) and moderate line polarization (0.30 ± 0.04\% for the prominent \ion{Si}{2} λ6355 feature and 0.85 ± 0.04\% for the high-velocity Ca component). The high degree of spherical symmetry implied by the low line and continuum polarization at this early epoch is consistent with explosion models of delayed detonations and is inconsistent with the merger-induced explosionmore »scenario. The dense UV and optical photometry and optical spectroscopy within the first ∼ 100 days after the maximum light indicate that SN\,2018gv is a normal Type Ia SN with similar spectrophotometric behavior to SN\,2011fe.« less
  5. Abstract We present and analyze a near-infrared (NIR) spectrum of the underluminous Type Ia supernova SN 2020qxp/ASASSN-20jq obtained with NIRES at the Keck Observatory, 191 days after B -band maximum. The spectrum is dominated by a number of broad emission features, including the [Fe ii ] at 1.644 μ m, which is highly asymmetric with a tilted top and a peak redshifted by ≈2000 km s −1 . In comparison with 2D non-LTE synthetic spectra computed from 3D simulations of off-center delayed-detonation Chandrasekhar-mass ( M ch ) white dwarf (WD) models, we find good agreement between the observed lines and the synthetic profiles, and are able to unravel the structure of the progenitor’s envelope. We find that the size and tilt of the [Fe ii ] 1.644 μ m profile (in velocity space) is an effective way to determine the location of an off-center delayed-detonation transition (DDT) and the viewing angle, and it requires a WD with a high central density of ∼4 × 10 9 g cm −3 . We also tentatively identify a stable Ni feature around 1.9 μ m characterized by a “pot-belly” profile that is slightly offset with respect to the kinematic center. In the casemore »of SN 2020qxp/ASASSN-20jq, we estimate that the location of the DDT is ∼0.3 M WD off center, which gives rise to an asymmetric distribution of the underlying ejecta. We also demonstrate that low-luminosity and high-density WD SN Ia progenitors exhibit a very strong overlap of Ca and 56 Ni in physical space. This results in the formation of a prevalent [Ca ii ] 0.73 μ m emission feature that is sensitive to asymmetry effects. Our findings are discussed within the context of alternative scenarios, including off-center C/O detonations in He-triggered sub- M Ch WDs and the direct collision of two WDs. Snapshot programs with Gemini/Keck/Very Large Telescope (VLT)/ELT-class instruments and our spectropolarimetry program are complementary to mid-IR spectra by the James Webb Space Telescope (JWST).« less