skip to main content


Title: Spectropolarimetry of the Type Ia SN 2019ein rules out significant global asphericity of the ejecta
ABSTRACT Detailed spectropolarimetric studies may hold the key to probing the explosion mechanisms and the progenitor scenarios of Type Ia supernovae (SNe Ia). We present multi-epoch spectropolarimetry and imaging polarimetry of SN 2019ein, an SN Ia showing high expansion velocities at early phases. The spectropolarimetry sequence spans from ∼−11 to +10 d relative to peak brightness in the B band. We find that the level of the continuum polarization of SN 2019ein, after subtracting estimated interstellar polarization, is in the range 0.0–0.3 per cent, typical for SNe Ia. The polarization position angle remains roughly constant before and after the SN light-curve peak, implying that the inner regions share the same axisymmetry as the outer layers. We observe high polarization (∼1 per cent) across both the Si ii λ6355 and Ca ii near-infrared triplet features. These two lines also display complex polarization modulations. The spectropolarimetric properties of SN 2019ein rule out a significant departure from spherical symmetry of the ejecta for up to a month after the explosion. These observations disfavour merger-induced and double-detonation models for SN 2019ein. The imaging polarimetry shows weak evidence for a modest increase in polarization after ∼20 d since the B-band maximum. If this rise is real and is observed in other SNe Ia at similar phases, we may have seen, for the first time, an aspherical interior similar to what has been previously observed for SNe IIP. Future polarization observations of SNe Ia extending to post-peak epochs will help to examine the inner structure of the explosion.  more » « less
Award ID(s):
1715133 1817099
NSF-PAR ID:
10351319
Author(s) / Creator(s):
;  ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4058 to 4070
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We observed seven epochs of spectropolarimetry in optical wavelengths for the Type IIb SN 2011hs, ranging from -3 to +40 d with respect to V-band maximum. A high degree of interstellar polarization was detected (up to ˜3 per cent), with a peak lying blueward of 4500 Å. Similar behaviours have been seen in some Type Ia supernovae (SNe), but had never been observed in a Type IIb. We find that it is most likely the result of a relative enhancement of small silicate grains in the vicinity of the SN. Significant intrinsic continuum polarization was recovered at -3 and +2 d (p = 0.55 ± 0.12 per cent and 0.75 ± 0.11 per cent, respectively). We discuss the change of the polarization angle across spectral lines and in the continuum as diagnostics for the 3D structure of the ejecta. We see a gradual rotation by about -50° in the continuum polarization angle between -2 and +18 d after V-band maximum. A similar rotation in He I λ5876, Hα and the Ca II infrared triplet seems to indicate a strong influence of the global geometry on the line polarization features. The differences in the evolution of their respective loops on the Stokes q - u plane suggest that line specific geometries are also being probed. Possible interpretations are discussed and placed in the context of literature. We find that the spectropolarimetry of SN 2011hs is most similar to that of SN 2011dh, albeit with notable differences. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present photometry, spectra, and spectropolarimetry of supernova (SN) 2014ab, obtained through ∼200 d after peak brightness. SN 2014ab was a luminous Type IIn SN (MV < −19.14 mag) discovered after peak brightness near the nucleus of its host galaxy, VV 306c. Pre-discovery upper limits constrain the time of explosion to within 200 d prior to discovery. While SN 2014ab declined by ∼1 mag over the course of our observations, the observed spectrum remained remarkably unchanged. Spectra exhibit an asymmetric emission-line profile with a consistently stronger blueshifted component, suggesting the presence of dust or a lack of symmetry between the far side and near side of the SN. The Pa β emission line shows a profile very similar to that of H α, implying that this stronger blueshifted component is caused either through obscuration by large dust grains, occultation by optically thick material, or a lack of symmetry between the far side and near side of the interaction region. Despite these asymmetric line profiles, our spectropolarimetric data show that SN 2014ab has little detected polarization after accounting for the interstellar polarization. We are likely seeing emission from a photosphere that has only small deviation from circular symmetry in the plane normal to our line of sight, but with either large-grain dust or significant asymmetry in the density of circumstellar material or SN ejecta along our line of sight. We suggest that SN 2014ab and SN 2010jl (as well as other SNe IIn) may be events with similar geometry viewed from different directions. 
    more » « less
  3. The non-detection of companion stars in Type Ia supernova (SN) progenitor systems lends support to the notion of double-degenerate (DD) systems and explosions triggered by the merging of two white dwarfs. This very asymmetric process should lead to a conspicuous polarimetric signature. By contrast, observations consistently find very low continuum polarization as the signatures from the explosion process largely dominate over the pre-explosion configuration within several days. Critical information about the interaction of the ejecta with a companion and any circumstellar matter is encoded in the early polarization spectra. In this study, we obtain spectropolarimetry of SN\,2018gv with the ESO Very Large Telescope at − 13.6 days relative to the B−band maximum light, or ∼ 5 days after the estimated explosion --- the earliest spectropolarimetric observations to date of any Type Ia SN. These early observations still show a low continuum polarization ( ≲ 0.2\%) and moderate line polarization (0.30 ± 0.04\% for the prominent \ion{Si}{2} λ6355 feature and 0.85 ± 0.04\% for the high-velocity Ca component). The high degree of spherical symmetry implied by the low line and continuum polarization at this early epoch is consistent with explosion models of delayed detonations and is inconsistent with the merger-induced explosion scenario. The dense UV and optical photometry and optical spectroscopy within the first ∼ 100 days after the maximum light indicate that SN\,2018gv is a normal Type Ia SN with similar spectrophotometric behavior to SN\,2011fe. 
    more » « less
  4. ABSTRACT

    Optical spectropolarimetry of the normal thermonuclear supernova (SN) 2019np from −14.5 to +14.5 d relative to B-band maximum detected an intrinsic continuum polarization (pcont) of 0.21 ± 0.09 per cent at the first epoch. Between days −11.5 and  +0.5, pcont remained ∼0 and by day +14.5 was again significant at 0.19 ± 0.10 per cent. Not considering the first epoch, the dominant axis of ${\rm Si\, {\small II}}$ λ6355 was roughly constant staying close the continuum until both rotated in opposite directions on day  +14.5. Detailed radiation-hydrodynamical simulations produce a very steep density slope in the outermost ejecta so that the low first-epoch pcont ≈ 0.2 per cent nevertheless suggests a separate structure with an axis ratio ∼2 in the outer carbon-rich (3.5–4) × 10−3 M⊙. Large-amplitude fluctuations in the polarization profiles and a flocculent appearance of the polar diagram for the ${\rm Ca\, {\small II}}$ near-infrared triplet (NIR3) may be related by a common origin. The temporal evolution of the polarization spectra agrees with an off-centre delayed detonation. The late-time increase in polarization and the possible change in position angle are also consistent with an aspherical 56Ni core. The pcont and the absorptions due to ${\rm Si\, {\small II}}$ λ6355 and ${\rm Ca\, {\small II}}$ NIR3 form in the same region of the extended photosphere, with an interplay between line occultation and thermalization producing p. Small-scale polarization features may be due to small-scale structures, but many could be related to atomic patterns of the quasi-continuum; they hardly have an equivalent in the total-flux spectra. We compare SN 2019np to other SNe and develop future objectives and strategies for SN Ia spectropolarimetry.

     
    more » « less
  5. ABSTRACT

    We present multi-epoch spectropolarimetry of Type IIn supernova SN2017hcc, 16–391 d after explosion. Continuum polarization up to 6 per cent is observed during the first epoch, making SN 2017hcc the most intrinsically polarized SN ever reported at visible wavelengths. During the first 29 d, when the polarization is strongest, the continuum polarization exhibits wavelength dependence that rises toward the blue, then becomes wavelength independent by day 45. The polarization drops rapidly during the first month, even as the flux is still climbing to peak brightness. None the less, unusually high polarization is maintained until day 68, at which point the polarization declines to levels comparable to those of previous well-studied SNe IIn. Only minor changes in position angle (PA) are measured throughout the evolution. The blue slope of the polarized continuum and polarized line emission during the first month suggests that an aspherical distribution of dust grains in pre-shock circumstellar material (CSM) is echoing the SN IIn spectrum and strongly influencing the polarization, while the subsequent decline during the wavelength-independent phase appears consistent with electron scattering near the SN/CSM interface. The persistence of the PA between these two phases suggests that the pre-existing CSM responsible for the dust scattering at early times is part of the same geometric structure as the electron-scattering region that dominates the polarization at later times. SN 2017hcc appears to be yet another, but more extreme, case of aspherical yet well-ordered CSM in Type IIn SNe, possibly resulting from pre-SN mass-loss shaped by a binary progenitor system.

     
    more » « less