skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative analysis of zooplankton diversities and compositions estimated from complement DNA and genomic DNA amplicons, metatranscriptomics, and morphological identifications
Abstract Community-based diversity analyses, such as metabarcoding, are increasingly popular in the field of metazoan zooplankton community ecology. However, some of the methodological uncertainties remain, such as the potential inflation of diversity estimates resulting from contamination by pseudogene sequences. Furthermore, primer affinity to specific taxonomic groups might skew community composition and structure during PCR. In this study, we estimated OTU (operational taxonomic unit) richness, Shannon’s H’, and the phylum-level community composition of samples from a coastal zooplankton community using four approaches: complement DNA (cDNA) and genomic DNA (gDNA) mitochondrial COI (Cytochrome oxidase subunit I) gene amplicon, metatranscriptome sequencing, and morphological identification. Results of mismatch distribution demonstrated that 90% is good threshold percentage to differentiate intra- and inter-species. Moderate level of correlations appeared upon comparing the species/OTU richness estimated from the different methods. Results strongly indicated that diversity inflation occurred in the samples amplified from gDNA because of mitochondrial pseudogene contamination (overall, gDNA produced two times more richness compared with cDNA amplicons). The unique community compositions observed in the PCR-based methods indicated that taxonomic amplification bias had occurred during the PCR. Therefore, it is recommended that PCR-free approaches be used whenever resolving community structure represents an essential aspect of the analysis.  more » « less
Award ID(s):
1840868
PAR ID:
10280697
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Fields, David
Date Published:
Journal Name:
ICES Journal of Marine Science
ISSN:
1054-3139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sergio Stefanni (Ed.)
    Zooplankton diversity in the deep “midnight zone” (>1000 m), where sunlight does not reach, remains largely unknown. Uncovering such diversity has been challenging because of the major difficulties in sampling deep pelagic fauna and identifying many (unknown) species that belong to these complex swimmer assemblages. In this study, we evaluated zooplankton diversity using two taxonomic marker genes: mitochondrial cytochrome oxidase subunit 1 (COI) and nuclear 18S ribosomal RNA (18S). We collected samples from plankton net tows, ranging from the surface to a depth of 5000 m above the Atacama Trench in the Southeast Pacific. Our study aimed to assess the zooplankton diversity among layers from the upper 1000 m to the ultra-deep abyssopelagic zone to test the hypothesis of decreasing diversity with depth resulting from limited carbon sources. The results showed unique, highly vertically structured communities within the five depth strata sampled, with maximal species richness observed in the upper bathypelagic layer (1000–2000 m). The high species richness of zooplankton (>750 OTUS) at these depths was higher than that found in the upper 1000 m. The vertical diversity trend exhibited a pattern similar to the well-known vertical pattern described for the benthic system. However, a large part of this diversity was either unknown (>50%) or could not be assigned to any known species in current genetic diversity databases. DNA analysis showed that the Calanoid copepods, mostly represented bySubeucalanus monachus, the Euphausiacea,Euphausia mucronata, and the halocypridade,Paraconchoecia dasyophthalma, dominated the community. Water column temperature, dissolved oxygen, particulate carbon, and nitrogen appeared to be related to the observed vertical diversity pattern. Our findings revealed rich and little-known zooplankton diversity in the deep sea, emphasizing the importance of further exploration of this ecosystem to conserve and protect its unique biota. 
    more » « less
  2. Abstract Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition. 
    more » « less
  3. Reverchon, Frédérique (Ed.)
    ABSTRACT Microbial activities in sub-alpine forest soil influence global cycling of the potent greenhouse gas methane. Understanding the dynamics of methane-oxidizing bacterial communities, particularly the roles of potentially active versus total microbial populations, is necessary for reducing uncertainty in global methane budget estimates. However, our understanding of the factors influencing methane cycling in forest soils is limited by our lack of knowledge about the biology of the microbes involved and how these communities are shaped by their environment. Here, we compared the composition and potential activity of microbial communities using 16S rRNA gene amplicon sequencing of total genomic DNA (gDNA) and potentially active complementary DNA (cDNA) from shallow soil in Red Butte Canyon (Salt Lake City, Utah, USA). We compared riparian and upland soils at two time points in the growing season and found distinct differences in both the community composition of the gDNA and cDNA libraries and the potential drivers of these community structures. Aerobic methane-oxidizing bacteria (methanotrophs) were detected in all samples, with cDNA libraries containing a higher average relative abundance and diversity of methanotrophs compared to gDNA libraries. Methane flux at the sample sites did not significantly correlate to the relative abundance (gDNA) or potential activity (cDNA) of methanotrophs. In the cDNA libraries, there were significant positive correlations between the abundance ofMethylococcaceaefamily methanotrophs and several non-methanotrophic methylotrophs previously found to be associated with methane-oxidizing bacterial communities. These findings suggest a complex relationship between methane-cycling bacterial communities and methane flux and highlight the need for furtherin situstudies to understand the environmental and ecological influences of these microbial consortia. IMPORTANCEMethane-oxidizing bacteria are found in diverse soil and sediment environments and play an important role in mitigating flux of this potent greenhouse gas into the atmosphere. However, it is unclear how these bacteria and their associated communities are structured in the environment and how their activity ultimately influences methane flux. In this work, we examine the composition and structure of methane-oxidizing bacterial communities in sub-alpine forest soil and find soil- and time-specific differences between the stable and potentially active populations. We also find that the potentially active populations of certain methanotrophs and non-methanotrophs are positively correlated. This work provides a step toward refining our understanding of microbially mediated biogeochemical cycles. 
    more » « less
  4. Hauser, Lorenz (Ed.)
    Abstract Metabarcoding of zooplankton communities is becoming more common, but molecular results must be interpreted carefully and validated with morphology-based analyses, where possible. To evaluate our metabarcoding approach within the California Current Ecosystem, we tested whether physical subsampling and PCR replication affects observed community composition; whether community composition resolved by metabarcoding is comparable to morphological analyses by digital imaging; and whether pH neutralization of ethanol with ammonium hydroxide affects molecular diversity. We found that (1) PCR replication was important to accurately resolve alpha diversity and that physical subsampling can decrease sensitivity to rare taxa; (2) there were significant correlations between relative read abundance and proportions of carbon biomass for most taxonomic groups analyzed, but such relationships showed better agreement for the more dominant taxonomic groups; and (3) ammonium hydroxide in ethanol had no effect on molecular diversity. Together, these results indicate that with appropriate replication, paired metabarcoding and morphological analyses can characterize zooplankton community structure and biomass, and that metabarcoding methods are to some extent indicative of relative community composition when absolute measures of abundance or biomass are not available. 
    more » « less
  5. Abstract Characterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change. 
    more » « less