skip to main content


Title: Early chemical changes during wood decomposition are controlled by fungal communities inhabiting stems at treefall in a tropical dry forest
Purpose A better knowledge of how deadwood decomposes is critical for accurately characterizing carbon and nutrient cycling in forests. Fungi dominate this decomposition process, but we still have limited understanding of fungal community structuring that ultimately controls the fate of wood decomposition. This is particularly true in tropical ecosystems. To address this knowledge gap, our study capitalized on an extreme storm event that caused a large and synchronized input of deadwood to the forest floor. Methods Here we report data for the first year of wood decomposition of trees in a Puerto Rican dry forest for nine tree species that were snapped by Hurricane Maria in 2017. We measured wood properties and the associated fungal communities after 12 months of decomposition and compared them with initial wood properties and stem-inhabiting fungal communities to identify the best predictors of wood decomposition rates and chemical changes. Results Changes in wood chemistry were primarily explained by rapid xylan losses, the main hemicellulose component for the studied tree species. Fungal communities were dominated by saprotrophic and plant pathogenic fungi and showed moderate changes over time. The initial relative abundances and ratios of different fungal functional guilds were significant predictors of both xylan and glucan losses, with plant pathogenic fungi accelerating cellulose and hemicellulose decomposition rates compared to saprotrophs. Conclusion Our results confirm that fungi present at the time of treefall are strong drivers of wood decomposition and suggest that plant pathogenic fungi might act as efficient early decomposers of hemicellulose in dry tropical forests.  more » « less
Award ID(s):
1822065
PAR ID:
10280841
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Plant and Soil
ISSN:
0032-079X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Druzhinina, Irina S. (Ed.)
    ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations. 
    more » « less
  2. Abstract

    Bark beetles are a principal source of tree mortality in conifer forests, with beetle distribution and beetle-associated tree mortality increasing in frequency and extent. While bark beetles are associated with large-scale outbreaks that affect landscape structure, function, and wood quality, they are also drivers of important ecological processes that modify forest ecosystems. Bark beetle activity may affect biogeochemistry and forest decomposition processes by mediating microbial and detrital communities and by facilitating the turnover of deadwood. The turnover of deadwood in bark beetle-attacked forests has important implications for forest biogeochemical cycling, as dead wood releases CO2 into the atmosphere and carbon, nitrogen, and other nutrients into surrounding soils. However, our understanding of how initial physical, chemical, and biotic changes to bark beetle-attacked trees affect the succession of detrital organisms and decomposition of beetle-generated deadwood remains poor. Furthermore, the relationship between woody decomposition and landscape-level changes in biogeochemical processes in forest ecosystems following bark beetle activity is not well unified. This review article bridges this divide and provides an interdisciplinary perspective on tree mortality, ecological succession, and woody decomposition mediated by bark beetles.

     
    more » « less
  3. Wood decomposition is regulated by multiple controls, including climate and wood traits, that vary at local to regional scales. Yet decomposition rates differ dramatically when these controls do not. Fungal community dynamics are often invoked to explain these differences, suggesting that knowledge of ecosystem properties that influence fungal communities will improve understanding and projection of wood decomposition. We hypothesize that deadwood inputs decompose faster in forests with higher stocks of downed coarse woody material (CWM) because CWM is a resource from which lignocellulolytic fungi rapidly colonize new inputs. To test this hypothesis, we measure decomposition of 1,116 pieces of fine woody material (FWM) of five species, incubated for 13 to 49 months at five locations spanning 10°-latitude in eastern U.S. forest. We place FWM pieces near and far from CWM across observational transects and experimental common gardens. Soil temperature positively affects location-level mean decomposition rates, but these among-location differences are smaller than within-location variation in decomposition. Some of this variability is caused by CWM, where FWM pieces next to CWM decompose more rapidly. These effects are greater with time of incubation and lower initial wood density of FWM. The effect size of CWM is of the same relative magnitude as for the known controls of temperature, deadwood density and diameter. Abundance data for CWM is available for many forests and hence may be an ecosystem variable amenable for inclusion in decomposition models. Our findings suggest that conservation efforts to rebuild depleted CWM stocks in temperate forests may accelerate decomposition of fresh deadwood inputs. Please see the associated manuscript for the Methods. All files are in .txt or .csv format and so can be opened with common, open-source software. The file named 'README_BradfordetalCWMproximity.txt' describes the uploaded files. 
    more » « less
  4. Summary

    Diverse communities of fungi and bacteria in deadwood mediate wood decay. While rates of decomposition vary greatly among woody species and spatially distinct habitats, the relative importance of these factors in structuring microbial communities and whether these shift over time remains largely unknown. We characterized fungal and bacterial diversity within pieces of deadwood that experienced 6.3–98.8% mass loss while decaying in common garden ‘rotplots’ in a temperate oak‐hickory forest in the Ozark Highlands, MO, USA. Communities were isolated from 21 woody species that had been decomposing for 1–5 years in spatially distinct habitats at the landscape scale (top and bottom of watersheds) and within stems (top and bottom of stems). Microbial community structure varied more strongly with wood traits than with spatial locations, mirroring the relative role of these factors on decay rates on the same pieces of wood even after 5 years. Co‐occurring fungal and bacterial communities persistently influenced one another independently from their shared environmental conditions. However, the relative influence of wood construction versus spatial locations differed between fungi and bacteria, suggesting that life history characteristics of these clades structure diversity differently across space and time in decomposing wood.

     
    more » « less
  5. Abstract

    Decomposition has historically been considered a function of climate and substrate but new research highlights the significant role of specific micro‐organisms and their interactions. In particular, wood decay is better predicted by variation in fungal communities than in climate. Multiple links exist: interspecific competition slows decomposition in more diverse fungal communities, whereas trait variation between different communities also affects process rates. Here, we paired field and laboratory experiments using a dispersal gradient at a forest‐shrubland ecotone to examine how fungi affect wood decomposition across scales. We observed that while fungal communities closer to forests were capable of faster decomposition, wood containing diverse fungal communities decomposed more slowly, independent of location. Dispersal‐driven stochasticity in small‐scale community assembly was nested within large‐scale turnover in the regional species pool, decoupling the two patterns. We thus find multiple distinct links between microbes and ecosystem function that manifest across different spatial scales.

     
    more » « less