skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Early chemical changes during wood decomposition are controlled by fungal communities inhabiting stems at treefall in a tropical dry forest
Purpose A better knowledge of how deadwood decomposes is critical for accurately characterizing carbon and nutrient cycling in forests. Fungi dominate this decomposition process, but we still have limited understanding of fungal community structuring that ultimately controls the fate of wood decomposition. This is particularly true in tropical ecosystems. To address this knowledge gap, our study capitalized on an extreme storm event that caused a large and synchronized input of deadwood to the forest floor. Methods Here we report data for the first year of wood decomposition of trees in a Puerto Rican dry forest for nine tree species that were snapped by Hurricane Maria in 2017. We measured wood properties and the associated fungal communities after 12 months of decomposition and compared them with initial wood properties and stem-inhabiting fungal communities to identify the best predictors of wood decomposition rates and chemical changes. Results Changes in wood chemistry were primarily explained by rapid xylan losses, the main hemicellulose component for the studied tree species. Fungal communities were dominated by saprotrophic and plant pathogenic fungi and showed moderate changes over time. The initial relative abundances and ratios of different fungal functional guilds were significant predictors of both xylan and glucan losses, with plant pathogenic fungi accelerating cellulose and hemicellulose decomposition rates compared to saprotrophs. Conclusion Our results confirm that fungi present at the time of treefall are strong drivers of wood decomposition and suggest that plant pathogenic fungi might act as efficient early decomposers of hemicellulose in dry tropical forests.  more » « less
Award ID(s):
1822065
PAR ID:
10280841
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Plant and Soil
ISSN:
0032-079X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Druzhinina, Irina S. (Ed.)
    ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations. 
    more » « less
  2. Wood decomposition is regulated by multiple controls, including climate and wood traits, that vary at local to regional scales. Yet decomposition rates differ dramatically when these controls do not. Fungal community dynamics are often invoked to explain these differences, suggesting that knowledge of ecosystem properties that influence fungal communities will improve understanding and projection of wood decomposition. We hypothesize that deadwood inputs decompose faster in forests with higher stocks of downed coarse woody material (CWM) because CWM is a resource from which lignocellulolytic fungi rapidly colonize new inputs. To test this hypothesis, we measure decomposition of 1,116 pieces of fine woody material (FWM) of five species, incubated for 13 to 49 months at five locations spanning 10°-latitude in eastern U.S. forest. We place FWM pieces near and far from CWM across observational transects and experimental common gardens. Soil temperature positively affects location-level mean decomposition rates, but these among-location differences are smaller than within-location variation in decomposition. Some of this variability is caused by CWM, where FWM pieces next to CWM decompose more rapidly. These effects are greater with time of incubation and lower initial wood density of FWM. The effect size of CWM is of the same relative magnitude as for the known controls of temperature, deadwood density and diameter. Abundance data for CWM is available for many forests and hence may be an ecosystem variable amenable for inclusion in decomposition models. Our findings suggest that conservation efforts to rebuild depleted CWM stocks in temperate forests may accelerate decomposition of fresh deadwood inputs. Please see the associated manuscript for the Methods. All files are in .txt or .csv format and so can be opened with common, open-source software. The file named 'README_BradfordetalCWMproximity.txt' describes the uploaded files. 
    more » « less
  3. Abstract Decomposition has historically been considered a function of climate and substrate but new research highlights the significant role of specific micro‐organisms and their interactions. In particular, wood decay is better predicted by variation in fungal communities than in climate. Multiple links exist: interspecific competition slows decomposition in more diverse fungal communities, whereas trait variation between different communities also affects process rates. Here, we paired field and laboratory experiments using a dispersal gradient at a forest‐shrubland ecotone to examine how fungi affect wood decomposition across scales. We observed that while fungal communities closer to forests were capable of faster decomposition, wood containing diverse fungal communities decomposed more slowly, independent of location. Dispersal‐driven stochasticity in small‐scale community assembly was nested within large‐scale turnover in the regional species pool, decoupling the two patterns. We thus find multiple distinct links between microbes and ecosystem function that manifest across different spatial scales. 
    more » « less
  4. Abstract Variation in decay rates across woody species is a key uncertainty in predicting the fate of carbon stored in deadwood, especially in the tropics. Quantifying the relative contributions of biotic decay agents, particularly microbes and termites, under different climates and across species with diverse wood traits could help explain this variation.To fill this knowledge gap, we deployed woody stems from 16 plant species native to either rainforest (n = 10) or savanna (n = 6) in northeast Australia, with and without termite access. For comparison, we also deployed standardized, non‐native pine blocks at both sites. We hypothesized that termites would increase rates of deadwood decay under conditions that limit microbial activity. Specifically, termite contributions to wood decay should be greater under dry conditions and in wood species with traits that constrain microbial decomposers.Termite discovery of stems was surprisingly low with only 17.6% and 22.6% of accessible native stems discovered in the rainforest and savanna respectively. Contrary to our hypothesis, stems discovered by termites decomposed faster only in the rainforest. Termites discovered and decayed pine blocks at higher rates than native stems in both the rainforest and savanna.We found significant variation in termite discovery and microbial decay rates across native wood species within the same site. Although wood traits explained 85% of the variation in microbial decay, they did not explain termite‐driven decay. For stems undiscovered by termites, decay rates were greater in species with higher wood nutrient concentrations and syringyl:guiacyl lignin ratios but lower carbon concentrations and wood densities.Synthesis. Ecosystem‐scale predictions of deadwood turnover and carbon storage should account for the impact of wood traits on decomposer communities. In tropical Australia, termite‐driven decay was lower than expected for native wood on the ground. Even if termites are present, they may not always increase decomposition rates of fallen native wood in tropical forests. Our study shows how the drivers of wood decay differ between Australian tropical rainforest and savanna; further research should test whether such differences apply world‐wide. 
    more » « less
  5. Abstract Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning‐damaged trees are a consistent resource for tropical saproxylic (i.e., dead wood‐dependent) organisms, but patterns of consumer colonization and succession following lightning strikes are not known. Here, we documented the occurrence of four common consumer taxa spanning multiple trophic levels—beetles,Aztecaants, termites, and fungi—in lightning strike sites and nearby undamaged control sites over time in a lowland forest of Panama. Beetle abundance was 10 times higher in lightning strike sites than in paired control sites, and beetle assemblages were compositionally distinct. Those in strike sites were initially dominated by bark and ambrosia beetles (Curculionidae: Platypodinae, Scolytinae); bark and ambrosia beetles, and predaceous taxa increased in abundance relatively synchronously. Beetle activity and fungal fruiting bodies, respectively, were 3.8 and 12.2 times more likely to be observed in lightning‐damaged trees in strike sites versus undamaged trees in paired control sites, whereas the occurrence probabilities ofAztecaants and termites were similar between damaged trees in lightning strike sites and undamaged trees in control sites. Tree size also was important; larger dead trees in strike sites were more likely to support beetles, termites, and fungal fruiting bodies, and larger trees—regardless of mortality status—were more likely to hostAzteca. Beetle presence was associated with higher rates of subsequent fungal presence, providing some evidence of beetle‐associated priority effects on colonization patterns. These results suggest that lightning plays a key role in supporting tropical insect and fungal consumers by providing localized patches of suitable habitat. Any climate‐driven changes in lightning frequency in tropical forests will likely affect a broad suite of consumer organisms, potentially altering ecosystem‐level processes. 
    more » « less