skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coarse woody debris accelerates the decomposition of deadwood inputs across temperate forest
Wood decomposition is regulated by multiple controls, including climate and wood traits, that vary at local to regional scales. Yet decomposition rates differ dramatically when these controls do not. Fungal community dynamics are often invoked to explain these differences, suggesting that knowledge of ecosystem properties that influence fungal communities will improve understanding and projection of wood decomposition. We hypothesize that deadwood inputs decompose faster in forests with higher stocks of downed coarse woody material (CWM) because CWM is a resource from which lignocellulolytic fungi rapidly colonize new inputs. To test this hypothesis, we measure decomposition of 1,116 pieces of fine woody material (FWM) of five species, incubated for 13 to 49 months at five locations spanning 10°-latitude in eastern U.S. forest. We place FWM pieces near and far from CWM across observational transects and experimental common gardens. Soil temperature positively affects location-level mean decomposition rates, but these among-location differences are smaller than within-location variation in decomposition. Some of this variability is caused by CWM, where FWM pieces next to CWM decompose more rapidly. These effects are greater with time of incubation and lower initial wood density of FWM. The effect size of CWM is of the same relative magnitude as for the known controls of temperature, deadwood density and diameter. Abundance data for CWM is available for many forests and hence may be an ecosystem variable amenable for inclusion in decomposition models. Our findings suggest that conservation efforts to rebuild depleted CWM stocks in temperate forests may accelerate decomposition of fresh deadwood inputs. Please see the associated manuscript for the Methods. All files are in .txt or .csv format and so can be opened with common, open-source software. The file named 'README_BradfordetalCWMproximity.txt' describes the uploaded files.  more » « less
Award ID(s):
2109592
PAR ID:
10434555
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Dryad
Date Published:
Edition / Version:
9
Subject(s) / Keyword(s):
basidiomycetes carbon cycling downed deadwood ecosystem controls scale wood-rot fungi FOS: Earth and related environmental sciences
Format(s):
Medium: X Size: 414623 bytes
Size(s):
414623 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Purpose A better knowledge of how deadwood decomposes is critical for accurately characterizing carbon and nutrient cycling in forests. Fungi dominate this decomposition process, but we still have limited understanding of fungal community structuring that ultimately controls the fate of wood decomposition. This is particularly true in tropical ecosystems. To address this knowledge gap, our study capitalized on an extreme storm event that caused a large and synchronized input of deadwood to the forest floor. Methods Here we report data for the first year of wood decomposition of trees in a Puerto Rican dry forest for nine tree species that were snapped by Hurricane Maria in 2017. We measured wood properties and the associated fungal communities after 12 months of decomposition and compared them with initial wood properties and stem-inhabiting fungal communities to identify the best predictors of wood decomposition rates and chemical changes. Results Changes in wood chemistry were primarily explained by rapid xylan losses, the main hemicellulose component for the studied tree species. Fungal communities were dominated by saprotrophic and plant pathogenic fungi and showed moderate changes over time. The initial relative abundances and ratios of different fungal functional guilds were significant predictors of both xylan and glucan losses, with plant pathogenic fungi accelerating cellulose and hemicellulose decomposition rates compared to saprotrophs. Conclusion Our results confirm that fungi present at the time of treefall are strong drivers of wood decomposition and suggest that plant pathogenic fungi might act as efficient early decomposers of hemicellulose in dry tropical forests. 
    more » « less
  2. Abstract Variation in decay rates across woody species is a key uncertainty in predicting the fate of carbon stored in deadwood, especially in the tropics. Quantifying the relative contributions of biotic decay agents, particularly microbes and termites, under different climates and across species with diverse wood traits could help explain this variation.To fill this knowledge gap, we deployed woody stems from 16 plant species native to either rainforest (n = 10) or savanna (n = 6) in northeast Australia, with and without termite access. For comparison, we also deployed standardized, non‐native pine blocks at both sites. We hypothesized that termites would increase rates of deadwood decay under conditions that limit microbial activity. Specifically, termite contributions to wood decay should be greater under dry conditions and in wood species with traits that constrain microbial decomposers.Termite discovery of stems was surprisingly low with only 17.6% and 22.6% of accessible native stems discovered in the rainforest and savanna respectively. Contrary to our hypothesis, stems discovered by termites decomposed faster only in the rainforest. Termites discovered and decayed pine blocks at higher rates than native stems in both the rainforest and savanna.We found significant variation in termite discovery and microbial decay rates across native wood species within the same site. Although wood traits explained 85% of the variation in microbial decay, they did not explain termite‐driven decay. For stems undiscovered by termites, decay rates were greater in species with higher wood nutrient concentrations and syringyl:guiacyl lignin ratios but lower carbon concentrations and wood densities.Synthesis. Ecosystem‐scale predictions of deadwood turnover and carbon storage should account for the impact of wood traits on decomposer communities. In tropical Australia, termite‐driven decay was lower than expected for native wood on the ground. Even if termites are present, they may not always increase decomposition rates of fallen native wood in tropical forests. Our study shows how the drivers of wood decay differ between Australian tropical rainforest and savanna; further research should test whether such differences apply world‐wide. 
    more » « less
  3. Hui, Dafeng (Ed.)
    Coarse woody debris (CWD) is an important component in forests, hosting a variety of organisms that have critical roles in nutrient cycling and carbon (C) storage. We developed a process-based model using literature, field observations, and expert knowledge to assess woody debris decomposition in forests and the movement of wood C into the soil and atmosphere. The sensitivity analysis was conducted against the primary ecological drivers (wood properties and ambient conditions) used as model inputs. The analysis used eighty-nine climate datasets from North America, from tropical (14.2° N) to boreal (65.0° N) zones, with large ranges in annual mean temperature (26.5°C in tropical to -11.8°C in boreal), annual precipitation (6,143 to 181 mm), annual snowfall (0 to 612 kg m -2 ), and altitude (3 to 2,824 m above mean see level). The sensitivity analysis showed that CWD decomposition was strongly affected by climate, geographical location and altitude, which together regulate the activity of both microbial and invertebrate wood-decomposers. CWD decomposition rate increased with increments in temperature and precipitation, but decreased with increases in latitude and altitude. CWD decomposition was also sensitive to wood size, density, position (standing vs downed), and tree species. The sensitivity analysis showed that fungi are the most important decomposers of woody debris, accounting for over 50% mass loss in nearly all climatic zones in North America. The model includes invertebrate decomposers, focusing mostly on termites, which can have an important role in CWD decomposition in tropical and some subtropical regions. The role of termites in woody debris decomposition varied widely, between 0 and 40%, from temperate areas to tropical regions. Woody debris decomposition rates simulated for eighty-nine locations in North America were within the published range of woody debris decomposition rates for regions in northern hemisphere from 1.6° N to 68.3° N and in Australia. 
    more » « less
  4. Abstract Decomposition has historically been considered a function of climate and substrate but new research highlights the significant role of specific micro‐organisms and their interactions. In particular, wood decay is better predicted by variation in fungal communities than in climate. Multiple links exist: interspecific competition slows decomposition in more diverse fungal communities, whereas trait variation between different communities also affects process rates. Here, we paired field and laboratory experiments using a dispersal gradient at a forest‐shrubland ecotone to examine how fungi affect wood decomposition across scales. We observed that while fungal communities closer to forests were capable of faster decomposition, wood containing diverse fungal communities decomposed more slowly, independent of location. Dispersal‐driven stochasticity in small‐scale community assembly was nested within large‐scale turnover in the regional species pool, decoupling the two patterns. We thus find multiple distinct links between microbes and ecosystem function that manifest across different spatial scales. 
    more » « less
  5. Abstract Severe, stand‐replacing wildfire substantially depletes nitrogen (N) stocks in subalpine conifer forests, potentially exacerbating N limitation of net primary productivity in many forested regions where fire frequency is increasing. In lodgepole pine (Pinus contortavar.latifolia) forests in the Greater Yellowstone Ecosystem (GYE), long‐term data show surface soil and biomass N stocks are replenished during the first few decades following wildfire, but the source(s) of that N are unclear. We measured acetylene reduction rates in multiple cryptic niches (i.e., lichen, moss, pine litter, dead wood, and mineral soil) in 34‐year‐old lodgepole pine stands in the GYE to explore the rates, temporal patterns, and climate controls on cryptic N fixation. Acetylene reduction rates were highest in late May (0.376 nmol C2H4g−1 h−1) when moisture availability was high compared with early August and mid‐October when moisture was relatively low (0.112 and 0.002 nmol C2H4g−1 h−1, respectively). We observed modest rates of nitrogenase activity in a few niches following a mid‐summer rain event, suggesting that moisture is an important factor regulating field‐based N fixation rates. In a laboratory experiment, moss responded more strongly to temperature and moisture variation than all other niches. Acetylene reduction rates in dead wood increased with temperature but not moisture content. No other niches showed clear responses to either moisture or temperature manipulation. Together, the field and laboratory results suggest that frequent asynchrony between favorable temperature and moisture conditions may limit N fixation rates in the field. Overall, total annual cryptic N fixation inputs (mean: 0.26; range: 0.07–2.9 kg N ha−1year−1) represented <10% of the postfire biomass and surface soil N accumulation in the same stands (39.4 kg N ha−1year−1), pointing to a still unknown source of ecosystem N following fire. 
    more » « less