Processing social information from faces is difficult for individuals with autism spectrum disorder (ASD). However, it remains unclear whether individuals with ASD make high-level social trait judgments from faces in the same way as neurotypical individuals. Here, we comprehensively addressed this question using naturalistic face images and representatively sampled traits. Despite similar underlying dimensional structures across traits, online adult participants with self-reported ASD showed different judgments and reduced specificity within each trait compared with neurotypical individuals. Deep neural networks revealed that these group differences were driven by specific types of faces and differential utilization of features within a face. Our results were replicated in well-characterized in-lab participants and partially generalized to more controlled face images (a preregistered study). By investigating social trait judgments in a broader population, including individuals with neurodevelopmental variations, we found important theoretical implications for the fundamental dimensions, variations, and potential behavioral consequences of social cognition.
more »
« less
Differences in the link between social trait judgment and socio-emotional experience in neurotypical and autistic individuals
Abstract Neurotypical (NT) individuals and individuals with autism spectrum disorder (ASD) make different judgments of social traits from others’ faces; they also exhibit different social emotional responses in social interactions. A common hypothesis is that the differences in face perception in ASD compared with NT is related to distinct social behaviors. To test this hypothesis, we combined a face trait judgment task with a novel interpersonal transgression task that induces measures social emotions and behaviors. ASD and neurotypical participants viewed a large set of naturalistic facial stimuli while judging them on a comprehensive set of social traits (e.g., warm, charismatic, critical). They also completed an interpersonal transgression task where their responsibility in causing an unpleasant outcome to a social partner was manipulated. The purpose of the latter task was to measure participants’ emotional (e.g., guilt) and behavioral (e.g., compensation) responses to interpersonal transgression. We found that, compared with neurotypical participants, ASD participants’ self-reported guilt and compensation tendency was less sensitive to our responsibility manipulation. Importantly, ASD participants and neurotypical participants showed distinct associations between self-reported guilt and judgments of criticalness from others' faces. These findings reveal a novel link between perception of social traits and social emotional responses in ASD.
more »
« less
- Award ID(s):
- 2401398
- PAR ID:
- 10574520
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Individuals with autism spectrum disorder (ASD) experience pervasive difficulties in processing social information from faces. However, the behavioral and neural mechanisms underlying social trait judgments of faces in ASD remain largely unclear. Here, we comprehensively addressed this question by employing functional neuroimaging and parametrically generated faces that vary in facial trustworthiness and dominance. Behaviorally, participants with ASD exhibited reduced specificity but increased inter-rater variability in social trait judgments. Neurally, participants with ASD showed hypo-activation across broad face-processing areas. Multivariate analysis based on trial-by-trial face responses could discriminate participant groups in the majority of the face-processing areas. Encoding social traits in ASD engaged vastly different face-processing areas compared to controls, and encoding different social traits engaged different brain areas. Interestingly, the idiosyncratic brain areas encoding social traits in ASD were still flexible and context-dependent, similar to neurotypicals. Additionally, participants with ASD also showed an altered encoding of facial saliency features in the eyes and mouth. Together, our results provide a comprehensive understanding of the neural mechanisms underlying social trait judgments in ASD.more » « less
-
Abstract Autism spectrum disorder (ASD) is characterized by difficulties in social processes, interactions, and communication. Yet, the neurocognitive bases underlying these difficulties are unclear. Here, we triangulated the ‘trans-diagnostic’ approach to personality, social trait judgments of faces, and neurophysiology to investigate (1) the relative position of autistic traits in a comprehensive social-affective personality space, and (2) the distinct associations between the social-affective personality dimensions and social trait judgment from faces in individuals with ASD and neurotypical individuals. We collected personality and facial judgment data from a large sample of online participants (N = 89 self-identified ASD;N = 307 neurotypical controls). Factor analysis with 33 subscales of 10 social-affective personality questionnaires identified a 4-dimensional personality space. This analysis revealed that ASD and control participants did not differ significantly along the personality dimensions of empathy and prosociality, antisociality, or social agreeableness. However, the ASD participants exhibited a weaker association between prosocial personality dimensions and judgments of facial trustworthiness and warmth than the control participants. Neurophysiological data also indicated that ASD participants had a weaker association with neuronal representations for trustworthiness and warmth from faces. These results suggest that the atypical association between social-affective personality and social trait judgment from faces may contribute to the social and affective difficulties associated with ASD.more » « less
-
Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations.more » « less
-
Abstract Face perception is a fundamental aspect of human social interaction, yet most research on this topic has focused on single modalities and specific aspects of face perception. Here, we present a comprehensive multimodal dataset for examining facial emotion perception and judgment. This dataset includes EEG data from 97 unique neurotypical participants across 8 experiments, fMRI data from 19 neurotypical participants, single-neuron data from 16 neurosurgical patients (22 sessions), eye tracking data from 24 neurotypical participants, behavioral and eye tracking data from 18 participants with ASD and 15 matched controls, and behavioral data from 3 rare patients with focal bilateral amygdala lesions. Notably, participants from all modalities performed the same task. Overall, this multimodal dataset provides a comprehensive exploration of facial emotion perception, emphasizing the importance of integrating multiple modalities to gain a holistic understanding of this complex cognitive process. This dataset serves as a key missing link between human neuroimaging and neurophysiology literature, and facilitates the study of neuropsychiatric populations.more » « less
An official website of the United States government

