skip to main content


Title: The scalar chemical potential in cosmological collider physics
A bstract Non-analyticity in co-moving momenta within the non-Gaussian bispectrum is a distinctive sign of on-shell particle production during inflation, presenting a unique opportunity for the “direct detection” of particles with masses as large as the inflationary Hubble scale ( H ). However, the strength of such non-analyticity ordinarily drops exponentially by a Boltzmann-like factor as masses exceed H . In this paper, we study an exception provided by a dimension-5 derivative coupling of the inflaton to heavy-particle currents, applying it specifically to the case of two real scalars. The operator has a “chemical potential” form, which harnesses the large kinetic energy scale of the inflaton, $$ {\overset{\cdot }{\phi}}_0^{1/2}\approx 60H $$ ϕ ⋅ 0 1 / 2 ≈ 60 H , to act as an efficient source of scalar particle production. Derivative couplings of inflaton ensure radiative stability of the slow-roll potential, which in turn maintains (approximate) scale-invariance of the inflationary correlations. We show that a signal not suffering Boltzmann suppression can be obtained in the bispectrum with strength f NL ∼ $$ \mathcal{O} $$ O (0 . 01–10) for an extended range of scalar masses $$ \lesssim {\overset{\cdot }{\phi}}_0^{1/2} $$ ≲ ϕ ⋅ 0 1 / 2 , potentially as high as 10 15 GeV, within the sensitivity of upcoming LSS and more futuristic 21-cm experiments. The mechanism does not invoke any particular fine-tuning of parameters or breakdown of perturbation-theoretic control. The leading contribution appears at tree-level , which makes the calculation analytically tractable and removes the loop-suppression as compared to earlier chemical potential studies of non-zero spins. The steady particle production allows us to infer the effective mass of the heavy particles and the chemical potential from the variation in bispectrum oscillations as a function of co-moving momenta. Our analysis sets the stage for generalization to heavy bosons with non-zero spin.  more » « less
Award ID(s):
1914731
NSF-PAR ID:
10280971
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Heavy particles with masses much bigger than the inflationary Hubble scale H * , can get non-adiabatically pair produced during inflation through their couplings to the inflaton. If such couplings give rise to time-dependent masses for the heavy particles, then following their production, the heavy particles modify the curvature perturbation around their locations in a time-dependent and scale non-invariant manner. This results into a non-trivial spatial profile of the curvature perturbation that is preserved on superhorizon scales and eventually generates localized hot or cold spots on the CMB. We explore this phenomenon by studying the inflationary production of heavy scalars and derive the final temperature profile of the spots on the CMB by taking into account the subhorizon evolution, focusing in particular on the parameter space where pairwise hot spots (PHS) arise. When the heavy scalar has an $$ \mathcal{O} $$ O (1) coupling to the inflaton, we show that for an idealized situation where the dominant background to the PHS signal comes from the standard CMB fluctuations themselves, a simple position space search based on applying a temperature cut, can be sensitive to heavy particle masses M 0 /H * ∼ $$ \mathcal{O} $$ O (100). The corresponding PHS signal also modifies the CMB power spectra and bispectra, although the corrections are below (outside) the sensitivity of current measurements (searches). 
    more » « less
  2. null (Ed.)
    A bstract We report on the measurement of the Central Exclusive Production of charged particle pairs h + h − ( h = π, K, p ) with the STAR detector at RHIC in proton-proton collisions at $$ \sqrt{s} $$ s = 200 GeV. The charged particle pairs produced in the reaction pp → p ′ + h + h − + p ′ are reconstructed from the tracks in the central detector and identified using the specific energy loss and the time of flight method, while the forward-scattered protons are measured in the Roman Pot system. Exclusivity of the event is guaranteed by requiring the transverse momentum balance of all four final-state particles. Differential cross sections are measured as functions of observables related to the central hadronic final state and to the forward-scattered protons. They are measured in a fiducial region corresponding to the acceptance of the STAR detector and determined by the central particles’ transverse momenta and pseudorapidities as well as by the forward-scattered protons’ momenta. This fiducial region roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range 0 . 04 GeV 2 < −t 1 , −t 2 < 0 . 2 GeV 2 , invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range |η| < 0 . 7. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of π + π − and K + K − pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to π + π − production. For π + π − production, the fiducial cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the f 0 (980), f 2 (1270) and f 0 (1500), with a possible small contribution from the f 0 (1370). Fits to the extrapolated differential cross section as a function of t 1 and t 2 enable extraction of the exponential slope parameters in several bins of the invariant mass of π + π − pairs. These parameters are sensitive to the size of the interaction region. 
    more » « less
  3. Abstract

    This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals.

    The following summarizes the main results proved under suitable partition hypotheses.

    If$\kappa $is a cardinal,$\epsilon < \kappa $,${\mathrm {cof}}(\epsilon ) = \omega $,$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$and$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then$\Phi $satisfies the almost everywhere short length continuity property: There is a club$C \subseteq \kappa $and a$\delta < \epsilon $so that for all$f,g \in [C]^\epsilon _*$, if$f \upharpoonright \delta = g \upharpoonright \delta $and$\sup (f) = \sup (g)$, then$\Phi (f) = \Phi (g)$.

    If$\kappa $is a cardinal,$\epsilon $is countable,$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$holds and$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then$\Phi $satisfies the strong almost everywhere short length continuity property: There is a club$C \subseteq \kappa $and finitely many ordinals$\delta _0, ..., \delta _k \leq \epsilon $so that for all$f,g \in [C]^\epsilon _*$, if for all$0 \leq i \leq k$,$\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$, then$\Phi (f) = \Phi (g)$.

    If$\kappa $satisfies$\kappa \rightarrow _* (\kappa )^\kappa _2$,$\epsilon \leq \kappa $and$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then$\Phi $satisfies the almost everywhere monotonicity property: There is a club$C \subseteq \kappa $so that for all$f,g \in [C]^\epsilon _*$, if for all$\alpha < \epsilon $,$f(\alpha ) \leq g(\alpha )$, then$\Phi (f) \leq \Phi (g)$.

    Suppose dependent choice ($\mathsf {DC}$),${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$and the almost everywhere short length club uniformization principle for${\omega _1}$hold. Then every function$\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$satisfies a finite continuity property with respect to closure points: Let$\mathfrak {C}_f$be the club of$\alpha < {\omega _1}$so that$\sup (f \upharpoonright \alpha ) = \alpha $. There is a club$C \subseteq {\omega _1}$and finitely many functions$\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$so that for all$f \in [C]^{\omega _1}_*$, for all$g \in [C]^{\omega _1}_*$, if$\mathfrak {C}_g = \mathfrak {C}_f$and for all$i < n$,$\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$, then$\Phi (g) = \Phi (f)$.

    Suppose$\kappa $satisfies$\kappa \rightarrow _* (\kappa )^\epsilon _2$for all$\epsilon < \kappa $. For all$\chi < \kappa $,$[\kappa ]^{<\kappa }$does not inject into${}^\chi \mathrm {ON}$, the class of$\chi $-length sequences of ordinals, and therefore,$|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$. As a consequence, under the axiom of determinacy$(\mathsf {AD})$, these two cardinality results hold when$\kappa $is one of the following weak or strong partition cardinals of determinacy:${\omega _1}$,$\omega _2$,$\boldsymbol {\delta }_n^1$(for all$1 \leq n < \omega $) and$\boldsymbol {\delta }^2_1$(assuming in addition$\mathsf {DC}_{\mathbb {R}}$).

     
    more » « less
  4. A bstract Results are presented from a search for physics beyond the standard model in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV in channels with two Higgs bosons, each decaying via the process H → b $$ \overline{\mathrm{b}} $$ b ¯ , and large missing transverse momentum. The search uses a data sample corresponding to an integrated luminosity of 137 fb − 1 collected by the CMS experiment at the CERN LHC. The search is motivated by models of supersymmetry that predict the production of neutralinos, the neutral partners of the electroweak gauge and Higgs bosons. The observed event yields in the signal regions are found to be consistent with the standard model background expectations. The results are interpreted using simplified models of supersymmetry. For the electroweak production of nearly mass-degenerate higgsinos, each of whose decay chains yields a neutralino $$ \left({\overset{\sim }{\upchi}}_1^0\right) $$ χ ~ 1 0 that in turn decays to a massless goldstino and a Higgs boson, $$ \left({\overset{\sim }{\upchi}}_1^0\right) $$ χ ~ 1 0 masses in the range 175 to 1025 GeV are excluded at 95% confidence level. For the strong production of gluino pairs decaying via a slightly lighter $$ \left({\overset{\sim }{\upchi}}_2^0\right) $$ χ ~ 2 0 to H and a light $$ \left({\overset{\sim }{\upchi}}_1^0\right) $$ χ ~ 1 0 , gluino masses below 2330 GeV are excluded. 
    more » « less
  5. A bstract A search for the exotic decay of the Higgs boson ( H ) into a b $$ \overline{b} $$ b ¯ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb − 1 of pp collisions at $$ \sqrt{s} $$ s = 13 TeV. The search targets events from ZH production in an NMSSM scenario where H → $$ {\overset{\sim }{\chi}}_2^0{\overset{\sim }{\chi}}_1^0 $$ χ ~ 2 0 χ ~ 1 0 , with $$ {\overset{\sim }{\chi}}_2^0 $$ χ ~ 2 0 → $$ a{\overset{\sim }{\chi}}_1^0 $$ a χ ~ 1 0 , where a is a light pseudoscalar Higgs boson and $$ {\overset{\sim }{\chi}}_{1,2}^0 $$ χ ~ 1 , 2 0 are the two lightest neutralinos. The decay of the a boson into a pair of b -quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a b -quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $$ {\overset{\sim }{\chi}}_2^0 $$ χ ~ 2 0 , $$ {\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 and a boson. 
    more » « less