- Award ID(s):
- 1914731
- PAR ID:
- 10280971
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 2
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A bstract Heavy particles with masses much bigger than the inflationary Hubble scale H * , can get non-adiabatically pair produced during inflation through their couplings to the inflaton. If such couplings give rise to time-dependent masses for the heavy particles, then following their production, the heavy particles modify the curvature perturbation around their locations in a time-dependent and scale non-invariant manner. This results into a non-trivial spatial profile of the curvature perturbation that is preserved on superhorizon scales and eventually generates localized hot or cold spots on the CMB. We explore this phenomenon by studying the inflationary production of heavy scalars and derive the final temperature profile of the spots on the CMB by taking into account the subhorizon evolution, focusing in particular on the parameter space where pairwise hot spots (PHS) arise. When the heavy scalar has an $$ \mathcal{O} $$ O (1) coupling to the inflaton, we show that for an idealized situation where the dominant background to the PHS signal comes from the standard CMB fluctuations themselves, a simple position space search based on applying a temperature cut, can be sensitive to heavy particle masses M 0 /H * ∼ $$ \mathcal{O} $$ O (100). The corresponding PHS signal also modifies the CMB power spectra and bispectra, although the corrections are below (outside) the sensitivity of current measurements (searches).more » « less
-
null (Ed.)Let ϕ : S 2 → S 2 \phi :S^2 \to S^2 be an orientation-preserving branched covering whose post-critical set has finite cardinality n n . If ϕ \phi has a fully ramified periodic point p ∞ p_{\infty } and satisfies certain additional conditions, then, by work of Koch, ϕ \phi induces a meromorphic self-map R ϕ R_{\phi } on the moduli space M 0 , n \mathcal {M}_{0,n} ; R ϕ R_{\phi } descends from Thurston’s pullback map on Teichmüller space. Here, we relate the dynamics of R ϕ R_{\phi } on M 0 , n \mathcal {M}_{0,n} to the dynamics of ϕ \phi on S 2 S^2 . Let ℓ \ell be the length of the periodic cycle in which the fully ramified point p ∞ p_{\infty } lies; we show that R ϕ R_{\phi } is algebraically stable on the heavy-light Hassett space corresponding to ℓ \ell heavy marked points and ( n − ℓ ) (n-\ell ) light points.more » « less
-
A bstract Results are presented from a search for physics beyond the standard model in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV in channels with two Higgs bosons, each decaying via the process H → b $$ \overline{\mathrm{b}} $$ b ¯ , and large missing transverse momentum. The search uses a data sample corresponding to an integrated luminosity of 137 fb − 1 collected by the CMS experiment at the CERN LHC. The search is motivated by models of supersymmetry that predict the production of neutralinos, the neutral partners of the electroweak gauge and Higgs bosons. The observed event yields in the signal regions are found to be consistent with the standard model background expectations. The results are interpreted using simplified models of supersymmetry. For the electroweak production of nearly mass-degenerate higgsinos, each of whose decay chains yields a neutralino $$ \left({\overset{\sim }{\upchi}}_1^0\right) $$ χ ~ 1 0 that in turn decays to a massless goldstino and a Higgs boson, $$ \left({\overset{\sim }{\upchi}}_1^0\right) $$ χ ~ 1 0 masses in the range 175 to 1025 GeV are excluded at 95% confidence level. For the strong production of gluino pairs decaying via a slightly lighter $$ \left({\overset{\sim }{\upchi}}_2^0\right) $$ χ ~ 2 0 to H and a light $$ \left({\overset{\sim }{\upchi}}_1^0\right) $$ χ ~ 1 0 , gluino masses below 2330 GeV are excluded.more » « less
-
A bstract A search for the exotic decay of the Higgs boson ( H ) into a b $$ \overline{b} $$ b ¯ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb − 1 of pp collisions at $$ \sqrt{s} $$ s = 13 TeV. The search targets events from ZH production in an NMSSM scenario where H → $$ {\overset{\sim }{\chi}}_2^0{\overset{\sim }{\chi}}_1^0 $$ χ ~ 2 0 χ ~ 1 0 , with $$ {\overset{\sim }{\chi}}_2^0 $$ χ ~ 2 0 → $$ a{\overset{\sim }{\chi}}_1^0 $$ a χ ~ 1 0 , where a is a light pseudoscalar Higgs boson and $$ {\overset{\sim }{\chi}}_{1,2}^0 $$ χ ~ 1 , 2 0 are the two lightest neutralinos. The decay of the a boson into a pair of b -quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a b -quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $$ {\overset{\sim }{\chi}}_2^0 $$ χ ~ 2 0 , $$ {\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 and a boson.more » « less
-
In this paper, we systematically study the evolution of the Universe within the framework of a modified loop quantum cosmological model (mLQC-I) using various inflationary potentials, including chaotic, Starobinsky, generalized Starobinsky, polynomials of the first and second kinds, generalized T-models and natural inflation. In all these models, the big bang singularity is replaced by a quantum bounce, and the evolution of the Universe, both before and after the bounce, is universal and weakly dependent on the inflationary potentials, as long as the evolution is dominated by the kinetic energy of the inflaton at the bounce. In particular, the pre-bounce evolution can be universally divided into three different phases: pre-bouncing, pre-transition, and pre-de Sitter. The pre-bouncing phase occurs immediately before the quantum bounce, during which the evolution of the Universe is dominated by the kinetic energy of the inflaton. Thus, the equation of state of the inflaton is about one, w(ϕ)≃1. Soon, the inflation potential takes over, so w(ϕ) rapidly falls from one to negative one. This pre-transition phase is very short and quickly turns into the pre-de Sitter phase, whereby the effective cosmological constant of Planck size takes over and dominates the rest of the contracting phase. Throughout the entire pre-bounce regime, the evolution of both the expansion factor and the inflaton can be approximated by universal analytical solutions, independent of the specific inflation potentials.