Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π−, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.
more »
« less
Axion inflation in the strong-backreaction regime: decay of the Anber-Sorbo solution
Axion inflation coupled to Abelian gauge fields via a Chern-Simons-like term of the form$$ \phi F\overset{\sim }{F} $$ represents an attractive inflationary model with a rich phenomenology, including the production of magnetic fields, black holes, gravitational waves, and the matter-antimatter asymmetry. In this work, we focus on a particular regime of axion inflation, the so-called Anber-Sorbo (AS) solution, in which the energy loss in the gauge-field production provides the dominant source of friction for the inflaton motion. We revisit the AS solution and confirm that it is unstable. Contrary to earlier numerical works that attempted to reach the AS solution starting from a regime of weak backreaction, we perform, for the first time, a numerical evolution starting directly from the regime of strong backreaction. Our analysis strongly suggests that, at least as long as one neglects spatial inhomogeneities in the inflaton field, the AS solution has no basin of attraction, not even a very small one that might have been missed in previous numerical studies. Our analysis employs an arsenal of analytical and numerical techniques, some established and some newly introduced, including (1) linear perturbation theory along the lines of ref. [1], (2) the gradient expansion formalism (GEF) developed in ref. [2], (3) a new linearized version of the GEF, and (4) the standard mode-by-mode approach in momentum space in combination with input from the GEF. All these methods yield consistent results confirming the instability of the AS solution, which renders the dynamics of axion inflation in the strong-backreaction regime even more interesting than previously believed.
more »
« less
- Award ID(s):
- 2112800
- PAR ID:
- 10525474
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 11
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> The charge-parity (CP) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the t$$ \overline{\textrm{t}} $$ H and tH associated production, using 138 fb−1of data collected in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H → WW or H →ττand the top quarks decay via t → Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation ofCP-even fromCP-odd scenarios. Two-dimensional confidence regions are set onκtand$$ \overset{\sim }{\kappa } $$ t, which are respectively defined as theCP-even andCP-odd top-Higgs Yukawa coupling modifiers. No significant fractionalCP-odd contributions, parameterized by the quantity|$$ {f}_{CP}^{\textrm{Htt}} $$ |are observed; the parameter is determined to be|$$ {f}_{CP}^{\textrm{Htt}} $$ |= 0.59 with an interval of (0.24,0.81) at 68% confidence level. The results are combined with previous results covering the H→ZZ and H→ γγdecay modes, yielding two- and one-dimensional confidence regions onκtand$$ \overset{\sim }{\kappa } $$ t, while|$$ {f}_{CP}^{\textrm{Htt}} $$ |is determined to be|$$ {f}_{CP}^{\textrm{Htt}} $$ |= 0.28 with an interval of|$$ {f}_{CP}^{\textrm{Htt}} $$ | <0.55 at 68% confidence level, in agreement with the standard modelCP-even prediction of|$$ {f}_{CP}^{\textrm{Htt}} $$ |= 0.more » « less
-
Abstract The radiation of steady surface gravity waves by a uniform stream$$U_{0}$$ over locally confined (width$$L$$ ) smooth topography is analyzed based on potential flow theory. The linear solution to this classical problem is readily found by Fourier transforms, and the nonlinear response has been studied extensively by numerical methods. Here, an asymptotic analysis is made for subcritical flow$$D/\lambda > 1$$ in the low-Froude-number ($$F^{2} \equiv \lambda /L \ll 1$$ ) limit, where$$\lambda = U_{0}^{2} /g$$ is the lengthscale of radiating gravity waves and$$D$$ is the uniform water depth. In this regime, the downstream wave amplitude, although formally exponentially small with respect to$$F$$ , is determined by a fully nonlinear mechanism even for small topography amplitude. It is argued that this mechanism controls the wave response for a broad range of flow conditions, in contrast to linear theory which has very limited validity.more » « less
-
A<sc>bstract</sc> A measurement of theCP-violating parameters in$$ {B}_s^0\boldsymbol{\to}{D}_s^{\mp }{K}^{\pm} $$ decays is reported, based on the analysis of proton-proton collision data collected by the LHCb experiment corresponding to an integrated luminosity of 6 fb−1at a centre-of-mass energy of 13 TeV. The measured parameters are obtained with a decay-time dependent analysis yieldingCf= 0.791 ± 0.061 ± 0.022,$$ {A}_f^{\Delta \Gamma} $$ = −0.051 ± 0.134 ± 0.058,$$ {A}_{\overline{f}}^{\Delta \Gamma} $$ = −0.303 ± 0.125 ± 0.055,Sf= −0.571 ± 0.084 ± 0.023 and$$ {S}_{\overline{f}} $$ = −0.503 ± 0.084 ± 0.025, where the first uncertainty is statistical and the second systematic. This corresponds to CP violation in the interference between mixing and decay of about 8.6σ. Together with the value of the$$ {B}_s^0 $$ mixing phase −2βs, these parameters are used to obtain a measurement of the CKM angleγequal to (74 ± 12)° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This result is combined with the previous LHCb measurement in this channel using 3 fb−1resulting in a determination of$$ \gamma ={\left({81}_{-11}^{+12}\right)}^{\circ } $$ .more » « less
-
A<sc>bstract</sc> A study of the Higgs boson decaying into bottom quarks (H→$$ b\overline{b} $$ ) and charm quarks (H→$$ c\overline{c} $$ ) is performed, in the associated production channel of the Higgs boson with aWorZboson, using 140 fb−1of proton-proton collision data at$$ \sqrt{s} $$ = 13 TeV collected by the ATLAS detector. The individual production ofWHandZHwithH→$$ b\overline{b} $$ is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical fiducial regions. The search for theH→$$ c\overline{c} $$ decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in|κc| <4.2 at 95% confidence level. Combining theH→$$ b\overline{b} $$ andH→$$ c\overline{c} $$ measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κc/κb|) to be less than 3.6 at 95% confidence level.more » « less
An official website of the United States government

