skip to main content


Title: From music to animacy: Causal reasoning links animate agents with musical sounds
Listening to music activates representations of movement and social agents. Why? We ask whether high-level causal reasoning about how music was generated can lead people to link musical sounds with animate agents. To test this, we asked whether people (N=60) make flexible inferences about whether an agent caused musical sounds, integrating information from the sounds’ timing and from the visual context in which it was produced. Using a 2x2 within-subject design, we found evidence of causal reasoning: In a context where producing a musical sequence would require self-propelled movement, people inferred that an agent had been present causing the sounds. When the context provided an alternative possible explanation, this ‘explained away’ the agent, reducing the tendency to infer an agent was present for the same acoustic stimuli. People can use causal reasoning to infer whether an agent produced musical sounds, suggesting that high-level cognition can link music with social concepts.  more » « less
Award ID(s):
1749551
NSF-PAR ID:
10281032
Author(s) / Creator(s):
;
Editor(s):
Fitch, T.; Lamm, C.; Leder, H.; Teßmar-Raible, K.
Date Published:
Journal Name:
Proceedings of the Annual Conference of the Cognitive Science Society
ISSN:
1069-7977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Research Highlights

    Children in our sample extracted patterns from an agent's positive social choices between multiple groups to reason about groups’ relative social standing.

    Children used the pattern of an agent's positive social choices to guide their reasoning about which groups were likely to be “leaders” and “helpers” in a fictional town.

    The pattern that emerged in an agent's choices of friends shaped children's thinking about groups’ relativesocialbut notphysicalpower.

    Children tracked social choices to reason about group‐based hierarchies at the individual level (which groups an agent prefers) and societal level (which groups are privileged).

     
    more » « less
  2. In open agent systems, the set of agents that are cooperating or competing changes over time and in ways that are nontrivial to predict. For example, if collaborative robots were tasked with fighting wildfires, they may run out of suppressants and be temporarily unavailable to assist their peers. We consider the problem of planning in these contexts with the additional challenges that the agents are unable to communicate with each other and that there are many of them. Because an agent's optimal action depends on the actions of others, each agent must not only predict the actions of its peers, but, before that, reason whether they are even present to perform an action. Addressing openness thus requires agents to model each other's presence, which becomes computationally intractable with high numbers of agents. We present a novel, principled, and scalable method in this context that enables an agent to reason about others' presence in its shared environment and their actions. Our method extrapolates models of a few peers to the overall behavior of the many-agent system, and combines it with a generalization of Monte Carlo tree search to perform individual agent reasoning in many-agent open environments. Theoretical analyses establish the number of agents to model in order to achieve acceptable worst case bounds on extrapolation error, as well as regret bounds on the agent's utility from modeling only some neighbors. Simulations of multiagent wildfire suppression problems demonstrate our approach's efficacy compared with alternative baselines. 
    more » « less
  3. Successfully navigating the social world requires reasoning about both high-level strategic goals, such as whether to cooperate or compete, as well as the low-level actions needed to achieve those goals. While previous work in experimental game theory has examined the former and work on multi-agent systems has examined the later, there has been little work investigating behavior in environments that require simultaneous planning and inference across both levels. We develop a hierarchical model of social agency that infers the intentions of other agents, strategically decides whether to cooperate or compete with them, and then executes either a cooperative or competitive planning program. Learning occurs across both high-level strategic decisions and low-level actions leading to the emergence of social norms. We test predictions of this model in multi-agent behavioral experiments using rich video-game like environments. By grounding strategic behavior in a formal model of planning, we develop abstract notions of both cooperation and competition and shed light on the computational nature of joint intentionality. 
    more » « less
  4. An overarching goal of Artificial Intelligence (AI) is creating autonomous, social agents that help people. Two important challenges, though, are that different people prefer different assistance from agents and that preferences can change over time. Thus, helping behaviors should be tailored to how an individual feels during the interaction. We hypothesize that human nonverbal behavior can give clues about users' preferences for an agent's helping behaviors, augmenting an agent's ability to computationally predict such preferences with machine learning models. To investigate our hypothesis, we collected data from 194 participants via an online survey in which participants were recorded while playing a multiplayer game. We evaluated whether the inclusion of nonverbal human signals, as well as additional context (e.g., via game or personality information), led to improved prediction of user preferences between agent behaviors compared to explicitly provided survey responses. Our results suggest that nonverbal communication -- a common type of human implicit feedback -- can aid in understanding how people want computational agents to interact with them. 
    more » « less
  5. When observing others’ behavior, people use Theory of Mind to infer unobservable beliefs, desires, and intentions. And when showing what activity one is doing, people will modify their behavior in order to facilitate more accurate interpretation and learning by an observer. Here, we present a novel model of how demonstrators act and observers interpret demonstrations corresponding to different levels of recursive social reasoning (i.e. a cognitive hierarchy) grounded in Theory of Mind. Our model can explain how demonstrators show others how to perform a task and makes predictions about how sophisticated observers can reason about communicative intentions. Additionally, we report an experiment that tests (1) how well an observer can learn from demonstrations that were produced with the intent to communicate, and (2) how an observer’s interpretation of demonstrations influences their judgments. 
    more » « less