skip to main content

This content will become publicly available on May 30, 2024

Title: Nonverbal Human Signals Can Help Autonomous Agents Infer Human Preferences for Their Behavior
An overarching goal of Artificial Intelligence (AI) is creating autonomous, social agents that help people. Two important challenges, though, are that different people prefer different assistance from agents and that preferences can change over time. Thus, helping behaviors should be tailored to how an individual feels during the interaction. We hypothesize that human nonverbal behavior can give clues about users' preferences for an agent's helping behaviors, augmenting an agent's ability to computationally predict such preferences with machine learning models. To investigate our hypothesis, we collected data from 194 participants via an online survey in which participants were recorded while playing a multiplayer game. We evaluated whether the inclusion of nonverbal human signals, as well as additional context (e.g., via game or personality information), led to improved prediction of user preferences between agent behaviors compared to explicitly provided survey responses. Our results suggest that nonverbal communication -- a common type of human implicit feedback -- can aid in understanding how people want computational agents to interact with them.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Date Published:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Explanations of AI Agents' actions are considered to be an important factor in improving users' trust in the decisions made by autonomous AI systems. However, as these autonomous systems evolve from reactive, i.e., acting on user input, to proactive, i.e., acting without requiring user intervention, there is a need to explore how the explanation for the actions of these agents should evolve. In this work, we explore the design of explanations through participatory design methods for a proactive auto-response messaging agent that can reduce perceived obligations and social pressure to respond quickly to incoming messages by providing unavailability-related context. We recruited 14 participants who worked in pairs during collaborative design sessions where they reasoned about the agent's design and actions. We qualitatively analyzed the data collected through these sessions and found that participants' reasoning about agent actions led them to speculate heavily on its design. These speculations significantly influenced participants' desire for explanations and the controls they sought to inform the agents' behavior. Our findings indicate a need to transform users' speculations into accurate mental models of agent design. Further, since the agent acts as a mediator in human-human communication, it is also necessary to account for social norms in its explanation design. Finally, user expertise in understanding their habits and behaviors allows the agent to learn from the user their preferences when justifying its actions.

    more » « less
  2. Much prior work on creating social agents that assist users relies on preconceived assumptions of what it means to be helpful. For example, it is common to assume that a helpful agent just assists with achieving a user’s objective. However, as assistive agents become more widespread, human-agent interactions may be more ad-hoc, providing opportunities for unexpected agent assistance. How would this affect human notions of an agent’s helpfulness? To investigate this question, we conducted an exploratory study (N=186) where participants interacted with agents displaying unexpected, assistive behaviors in a Space Invaders game and we studied factors that may influence perceived helpfulness in these interactions. Our results challenge the idea that human perceptions of the helpfulness of unexpected agent assistance can be derived from a universal, objective definition of help. Also, humans will reciprocate unexpected assistance, but might not always consider that they are in fact helping an agent. Based on our findings, we recommend considering personalization and adaptation when designing future assistive behaviors for prosocial agents that may try to help users in unexpected situations. 
    more » « less
  3. The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other based on their own internal state, or situation” (Queiroz et al. 2014, p.2).The work reported in the paper involved two studies with human subjects. The objectives of the first study were to examine whether people can recognize micro-expressions (in isolation) in animated agents, and whether there are differences in recognition based on the agent’s visual style (e.g., stylized versus realistic). The objectives of the second study were to investigate whether people can recognize the animated agents’ micro-expressions when integrated with macro-expressions, the extent to which the presence of micro + macro-expressions affect the perceived expressivity and naturalness of the animated agents, the extent to which exaggerating the micro expressions, e.g. increasing the amplitude of the animated facial displacements affects emotion recognition and perceived agent naturalness and emotional expressivity, and whether there are differences based on the agent’s design characteristics. In the first study, 15 participants watched eight micro-expression animations representing four different emotions (happy, sad, fear, surprised). Four animations featured a stylized agent and four a realistic agent. For each animation, subjects were asked to identify the agent’s emotion conveyed by the micro-expression. In the second study, 234 participants watched three sets of eight animation clips (24 clips in total, 12 clips per agent). Four animations for each agent featured the character performing macro-expressions only, four animations for each agent featured the character performing macro- + micro-expressions without exaggeration, and four animations for each agent featured the agent performing macro + micro-expressions with exaggeration. Participants were asked to recognize the true emotion of the agent and rate the emotional expressivity ad naturalness of the agent in each clip using a 5-point Likert scale. We have collected all the data and completed the statistical analysis. Findings and discussion, implications for research and practice, and suggestions for future work will be reported in the full paper. ReferencesAdamo N., Benes, B., Mayer, R., Lei, X., Meyer, Z., &Lawson, A. (2021). Multimodal Affective Pedagogical Agents for Different Types of Learners. In: Russo D., Ahram T., Karwowski W., Di Bucchianico G., Taiar R. (eds) Intelligent Human Systems Integration 2021. IHSI 2021. Advances in Intelligent Systems and Computing, 1322. Springer, Cham., P., &Friesen, W. V. (1969, February). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88–106. Queiroz, R. B., Musse, S. R., &Badler, N. I. (2014). Investigating Macroexpressions and Microexpressions in Computer Graphics Animated Faces. Presence, 23(2), 191-208.

    more » « less
  4. People work with AI systems to improve their decision making, but often under- or over-rely on AI predictions and perform worse than they would have unassisted. To help people appropriately rely on AI aids, we propose showing them behavior descriptions, details of how AI systems perform on subgroups of instances. We tested the efficacy of behavior descriptions through user studies with 225 participants in three distinct domains: fake review detection, satellite image classification, and bird classification. We found that behavior descriptions can increase human-AI accuracy through two mechanisms: helping people identify AI failures and increasing people's reliance on the AI when it is more accurate. These findings highlight the importance of people's mental models in human-AI collaboration and show that informing people of high-level AI behaviors can significantly improve AI-assisted decision making.

    more » « less
  5. Social robots are becoming increasingly influential in shaping the behavior of humans with whom they interact. Here, we examine how the actions of a social robot can influence human-to-human communication, and not just robot–human communication, using groups of three humans and one robot playing 30 rounds of a collaborative game ( n = 51 groups). We find that people in groups with a robot making vulnerable statements converse substantially more with each other, distribute their conversation somewhat more equally, and perceive their groups more positively compared to control groups with a robot that either makes neutral statements or no statements at the end of each round. Shifts in robot speech have the power not only to affect how people interact with robots, but also how people interact with each other, offering the prospect for modifying social interactions via the introduction of artificial agents into hybrid systems of humans and machines. 
    more » « less