skip to main content


Title: Cervical Spine Musculotendon Lengths When Reading a Tablet in Three Seated Positions
A popular posture for using wireless technology is reclined sitting, with the trunk rotated posteriorly to the hips. This position decreases the head’s gravitational moment; however, the head angle relative to the trunk is similar to that of upright sitting when using a tablet in the lap. This study compared cervical extensor musculotendon length changes from neutral among 3 common sitting postures and maximum neck flexion while using a tablet. Twenty-one participants had radiographs taken in neutral, full-flexion, and upright, semireclined, and reclined postures with a tablet in their lap. A biomechanical model was used to calculate subject-specific normalized musculotendon lengths for 27 cervical musculotendon segments. The lower cervical spine was more flexed during reclined sitting, but the skull was more flexed during upright sitting. Normalized musculotendon length increased in the reclined compared with an upright sitting position for the C4-C6/7 (deep) and C2-C6/7 (superficial) multifidi, semispinalis cervicis (C2-C7), and splenius capitis (Skull-C7). The suboccipital ( R 2  = .19–.71) and semispinalis capitis segment length changes were significantly correlated with the Skull-C1 angle (0.24–0.51). A semireclined reading position may be an ideal sitting posture to reduce the head’s gravitational moment arm without overstretching the assessed muscles.  more » « less
Award ID(s):
1658845
NSF-PAR ID:
10281117
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Applied Biomechanics
Volume:
37
Issue:
2
ISSN:
1065-8483
Page Range / eLocation ID:
122 to 129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lay Summary

    This study tested the use of a tablet in the behavioral assessment of young children with autism. Children watched a series of developmentally appropriate movies and their facial expressions were recorded using the camera embedded in the tablet. Results suggest that computational assessments of facial expressions may be useful in early detection of symptoms of autism.

     
    more » « less
  2. Abstract

    Navigating complex terrains requires dynamic interactions between the substrate, musculoskeletal, and sensorimotor systems. Current perturbation studies have mostly used visible terrain height perturbations, which do not allow us to distinguish among the neuromechanical contributions of feedforward control, feedback-mediated, and mechanical perturbation responses. Here, we use treadmill-belt speed perturbations to induce a targeted perturbation to foot speed only, and without terrain-induced changes in joint posture and leg loading at stance onset. Based on previous studies suggesting a proximo-distal gradient in neuromechanical control, we hypothesized that distal joints would exhibit larger changes in joint kinematics, compared to proximal joints. Additionally, we expected birds to use feedforward strategies to increase the intrinsic stability of gait. To test these hypotheses, seven adult guinea fowl were video recorded while walking on a motorized treadmill, during both steady and perturbed trials. Perturbations consisted of repeated exposures to a deceleration and acceleration of the treadmill-belt speed. Surprisingly, we found that joint angular trajectories and center of mass fluctuations remain very similar, despite substantial perturbation of foot velocity by the treadmill belt. Hip joint angular trajectories exhibit the largest changes, with the birds adopting a slightly more flexed position across all perturbed strides. Additionally, we observed increased stride duration across all strides, consistent with feedforward changes in the control strategy. The speed perturbations mainly influenced the timing of stance and swing, with the largest kinematic changes in the strides directly following a deceleration. Our findings do not support the general hypothesis of a proximo-distal gradient in joint control, as distal joint kinematics remain largely unchanged. Instead, we find that leg angular trajectory and the timing of stance and swing are most sensitive to this specific perturbation, and leg length actuation remains largely unchanged. Our results are consistent with modular task-level control of leg length and leg angle actuation, with different neuromechanical control and perturbation sensitivity in each actuation mode. Distal joints appear to be sensitive to changes in vertical loading but not foot fore-aft velocity. Future directions should include in vivo studies of muscle activation and force–length dynamics to provide more direct evidence of the sensorimotor control strategies for stability in response to belt-speed perturbations.

     
    more » « less
  3. Abstract

    The force-generating capacity of muscle depends upon many factors including the actin-myosin filament overlap due to the relative length of the sarcomere. Consequently, the force output of a muscle may vary throughout its range of motion, and the body posture allowing maximum force generation may differ even in otherwise similar species. We hypothesized that corn snakes would show an ontogenetic shift in sarcomere length range from being centered on the plateau of the length-tension curve in small individuals to being on the descending limb in adults. Sarcomere lengths across the plateau would be advantageous for locomotion, while the descending limb would be advantageous for constriction due to the increase in force as the coil tightens around the prey. To test this hypothesis, we collected sarcomere lengths from freshly euthanized corn snakes, preserving segments in straight and maximally curved postures, and quantifying sarcomere length via light microscopy. We dissected 7 muscles (spinalis, semispinalis, multifidus, longissimus dorsi, iliocostalis (dorsal and ventral), and levator costae) in an ontogenetic series of corn snakes (mass = 80–335 g) at multiple regions along the body (anterior, middle, and posterior). Our data shows all of the muscles analyzed are on the descending limb of the length-tension curve at rest across all masses, regions, and muscles analyzed, with muscles shortening onto or past the plateau when flexed. While these results are consistent with being advantageous for constriction at all sizes, there could also be unknown benefits of this sarcomere arrangement for locomotion or striking.

     
    more » « less
  4. Sitting is the most common status of modern human beings. Many people are sitting with bad posture which may lead to postural pain. Especially for people with short term-disabilities, sitting in the right posture is very important. In this research, we propose a posture recognition system on an office chair that can categorize different health-related sitting postures to prevent harm from bad sitting postures. The smart chair system consists of an array of five flex sensors integrated into an FPGA board. The output of the system is the classification result of the sitting posture. In this paper, several health-related sitting postures are selected. The sitting postures are: 1-sit straight; 2-left recline; 3-right recline; 4-lounge;5-lean backward; 6-cross left leg; 7-cross right leg. The proposed reconfigurable framework will be integrated as part of smart ambient assisted living with user-centered health monitoring system. 
    more » « less
  5. Cervical disc implants are conventional surgical treatments for patients with degenerative disc disease, such as cervical myelopathy and radiculopathy. However, the surgeon still must determine the candidacy of cervical disc implants mainly from the findings of diagnostic imaging studies, which can sometimes lead to complications and implant failure. To help address these problems, a new approach was developed to enable surgeons to preview the post-operative effects of an artificial disc implant in a patient-specific fashion prior to surgery. To that end, a robotic replica of a person’s spine was 3D printed, modified to include an artificial disc implant, and outfitted with a soft magnetic sensor array. The aims of this study are threefold: first, to evaluate the potential of a soft magnetic sensor array to detect the location and amplitude of applied loads; second, to use the soft magnetic sensor array in a 3D printed human spine replica to distinguish between five different robotically actuated postures; and third, to compare the efficacy of four different machine learning algorithms to classify the loads, amplitudes, and postures obtained from the first and second aims. Benchtop experiments showed that the soft magnetic sensor array was capable of precisely detecting the location and amplitude of forces, which were successfully classified by four different machine learning algorithms that were compared for their capabilities: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), and Artificial Neural Network (ANN). In particular, the RF and ANN algorithms were able to classify locations of loads applied 3.25 mm apart with 98.39% ± 1.50% and 98.05% ± 1.56% accuracies, respectively. Furthermore, the ANN had an accuracy of 94.46% ± 2.84% to classify the location that a 10 g load was applied. The artificial disc-implanted spine replica was subjected to flexion and extension by a robotic arm. Five different postures of the spine were successfully classified with 100% ± 0.0% accuracy with the ANN using the soft magnetic sensor array. All results indicated that the magnetic sensor array has promising potential to generate data prior to invasive surgeries that could be utilized to preoperatively assess the suitability of a particular intervention for specific patients and to potentially assist the postoperative care of people with cervical disc implants. 
    more » « less