Cervical laminoplasty is a useful for treatment for cervical myelopathy. However, this procedure has limitations for kyphotic cervical alignments. We used the finite element (FE) analysis and investigated the biomechanical changes in intact and laminoplasty models with lordosis, straight, and kyphosis cervical alignments. A three-dimensional FE model of the cervical spine (C2–C7) with ligaments was created from computer tomography. The model was modified with the following cobb angles (a) intact–lordotic model (intact–L; C2–C7 angle: −10°), (b) intact–straight model (intact–S; C2–C7 angle: 0°), and (c) intact–kyphotic model (intact–K; C2–C7 angle: 10°). The C3–C6 laminoplasty was conducted on the three intact models, represented by the laminoplasty–lordosis model (LM–L), laminoplasty–straight model (LM–S), and laminoplasty–kyphosis model (LM–K), respectively. Pure moment with compressive follower load of 100 N to represent the weight of the head/cranium and cervical muscle stabilization was applied to these models and the range of motion (ROM), annular stress, nucleus stress and facet forces were analyzed. ROM of intact–K and LM–K increased when compared to the other models. The LM–K had the highest mobility with 324% increase in ROM observed under extension, compared to LM–L. In addition, the annular stresses and nucleus stresses in intact–K and LM–K were higher compared to the other models. The maximum increase in annular stresses was about 309% in LM–K compared to the LM–L, observed at the C3–C4 segment. However, the facet contact forces were lower in the intact–K and LM–K, compared to the other models. Cases with cervical kyphosis alignment are at a disadvantage compared to cases with lordosis or straight alignment and should be treated with caution.
more »
« less
Biomechanical Analysis of Posterior Ligaments of Cervical Spine and Laminoplasty
Cervical laminoplasty is a valuable procedure for myelopathy but it is associated with complications such as increased kyphosis. The effect of ligament damage during cervical laminoplasty on biomechanics is not well understood. We developed the C2–C7 cervical spine finite element model and simulated C3–C6 double-door laminoplasty. Three models were created (a) intact, (b) laminoplasty-pre (model assuming that the ligamentum flavum (LF) between C3–C6 was preserved during surgery), and (c) laminoplasty-res (model assuming that the LF between C3–C6 was resected during surgery). The models were subjected to physiological loading, and the range of motion (ROM), intervertebral nucleus stress, and facet contact forces were analyzed under flexion/extension, lateral bending, and axial rotation. The maximum change in ROM was observed under flexion motion. Under flexion, ROM in the laminoplasty-pre model increased by 100.2%, 111.8%, and 98.6% compared to the intact model at C3–C4, C4–C5, and C5–C6, respectively. The ROM in laminoplasty-res further increased by 105.2%, 116.8%, and 101.8% compared to the intact model at C3–C4, C4–C5, and C5–C6, respectively. The maximum stress in the annulus/nucleus was observed under left bending at the C4–C5 segment where an increase of 139.5% and 229.6% compared to the intact model was observed for laminoplasty-pre and laminoplasty-res model, respectively. The highest facet contact forces were observed at C4–C5 under axial rotation, where an increase of 500.7% and 500.7% was observed compared to the intact model for laminoplasty-pre and laminoplasty-res, respectively. The posterior ligaments of the cervical spine play a vital role in restoring/stabilizing the cervical spine. When laminoplasty is performed, the surgeon needs to be careful not to injure the posterior soft tissue, including ligaments such as LF.
more »
« less
- Award ID(s):
- 1916636
- PAR ID:
- 10608932
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 11
- Issue:
- 16
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 7645
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IntroductionThe correlation between cervical alignment and clinical outcome of total disc replacement (TDR) surgery is arguable. We believe that this conflict exists because the parameters that influence the biomechanics of the cervical spine are not well understood, specifically the effect of TDR on different cervical alignments. Methods:A validated osseo-ligamentous model from C2-C7 was used in this study. The C2-C7 Cobb angle of the base model was modified to represent: lordotic (−10°), straight (0°), and kyphotic (+10°) cervical alignment. The TDR surgery was simulated at the C5-C6 segment. The range of motion (ROM), intradiscal pressure, annular stresses, and facet loads were computed for all the models. Results:The ROM results demonstrated kyphotic alignment after TDR surgery to be the most mobile when compared to intact base model (41% higher in flexion–extension, 51% higher in lateral bending, and 27% higher in axial rotation) followed by straight and lordotic alignment, respectively. The annular stresses for the kyphotic alignment when compared to intact base model were higher at the index level (33% higher in flexion–extension and 48% higher in lateral bending) compared to other alignments. The lordotic model demonstrated higher facet contact forces at the index level (75% higher in extension than kyphotic alignment, 51% higher in lateral bending than kyphotic alignment, and 78% higher in axial rotation than kyphotic alignment) when compared among the three alignment models. Conclusion:Preoperative cervical alignment should be an integral part of surgical planning for TDR surgery as different cervical alignments may significantly alter the postsurgical outcomes.more » « less
-
ABSTRACT IntroductionThe cervical spine, pivotal for mobility and overall body function, can be affected by cervical spondylosis, a major contributor to neural disorders. Prevalent in both general and military populations, especially among pilots, cervical spondylosis induces pain and limits spinal capabilities. Anterior Cervical Discectomy and Fusion (ACDF) surgery, proposed by Cloward in the 1950s, is a promising solution for restoring natural cervical curvature. The study objective was to investigate the impacts of ACDF implant design on postsurgical cervical biomechanics and neurorehabilitation outcomes by utilizing a biofield head-neck finite element (FE) platform that can facilitate scenario-specific perturbations of neck muscle activations. This study addresses the critical need to enhance computational models, specifically FE modeling, for ACDF implant design. Materials and MethodsWe utilized a validated head-neck FE model to investigate spine–implant biomechanical interactions. An S-shaped dynamic cage incorporating titanium (Ti) and polyetheretherketone (PEEK) materials was modeled at the C4/C5 level. The loading conditions were carefully designed to mimic helmet-to-helmet impact in American football, providing a realistic and challenging scenario. The analysis included intervertebral joint motion, disk pressure, and implant von Mises stress. ResultsThe PEEK implant demonstrated an increased motion in flexion and lateral bending at the contiguous spinal (C4/C5) level. In flexion, the Ti implant showed a modest 5% difference under 0% activation conditions, while PEEK exhibited a more substantial 14% difference. In bending, PEEK showed a 24% difference under 0% activation conditions, contrasting with Ti’s 17%. The inclusion of the head resulted in an average increase of 18% in neck angle and 14% in C4/C5 angle. Disk pressure was influenced by implant material, muscle activation level, and the presence of the head. Polyetheretherketone exhibited lower stress values at all intervertebral disc levels, with a significant effect at the C6/C7 levels. Muscle activation level significantly influenced disk stress at all levels, with higher activation yielding higher stress. Titanium implant consistently showed higher disk stress values than PEEK, with an orders-of-magnitude difference in von Mises stress. Excluding the head significantly affected disk and implant stress, emphasizing its importance in accurate implant performance simulation. ConclusionsThis study emphasized the use of a biofidelic head-neck model to assess ACDF implant designs. Our results indicated that including neck muscles and head structures improves biomechanical outcome measures. Furthermore, unlike Ti implants, our findings showed that PEEK implants maintain neck motion at the affected level and reduce disk stresses. Practitioners can use this information to enhance postsurgery outcomes and reduce the likelihood of secondary surgeries. Therefore, this study makes an important contribution to computational biomechanics and implant design domains by advancing computational modeling and theoretical knowledge on ACDF–spine interaction dynamics.more » « less
-
null (Ed.)A popular posture for using wireless technology is reclined sitting, with the trunk rotated posteriorly to the hips. This position decreases the head’s gravitational moment; however, the head angle relative to the trunk is similar to that of upright sitting when using a tablet in the lap. This study compared cervical extensor musculotendon length changes from neutral among 3 common sitting postures and maximum neck flexion while using a tablet. Twenty-one participants had radiographs taken in neutral, full-flexion, and upright, semireclined, and reclined postures with a tablet in their lap. A biomechanical model was used to calculate subject-specific normalized musculotendon lengths for 27 cervical musculotendon segments. The lower cervical spine was more flexed during reclined sitting, but the skull was more flexed during upright sitting. Normalized musculotendon length increased in the reclined compared with an upright sitting position for the C4-C6/7 (deep) and C2-C6/7 (superficial) multifidi, semispinalis cervicis (C2-C7), and splenius capitis (Skull-C7). The suboccipital ( R 2 = .19–.71) and semispinalis capitis segment length changes were significantly correlated with the Skull-C1 angle (0.24–0.51). A semireclined reading position may be an ideal sitting posture to reduce the head’s gravitational moment arm without overstretching the assessed muscles.more » « less
-
Abstract Extensive efforts have been made to develop flexible electronics with conjugated polymers that are intrinsically stretchable and soft. We recently systematically investigated the influence of conjugation break spacers (CBS) on the thermomechanical properties of a series n‐type naphthalene diimide‐based conjugated polymer and found that CBS can significantly reduce chain rigidity, melting point, as well as glass transition temperature. In the current work, we further examined the influence of CBS on the crystallization behaviors of PNDI‐C3 to C6, including isothermal crystallization kinetics, crystal polymorphism and subsequently time‐dependent modulus, in a holistic approach using differential scanning calorimetry, X‐ray scattering, polarized optical microscopy, atomic force microscopy, and pseudo‐free‐standing tensile test. Results demonstrate that increasing the length of CBS increases the crystallization half‐time by 1 order of magnitude from PNDI‐C3 to PNDI‐C6 from approximately 103to 104 s. The crystallization rate shows a bimodal dependence on the temperature due to the presence of different polymorphs. In addition, crystallization significantly affects the mechanical response, a stiffening in the modulus of nearly three times is observed for PNDI‐C5 when annealed at room temperature for 12 h. Crystallization kinetic is also influenced by molecular weight (MW). Higher MW PNDI‐C3 crystallizes slower. In addition, an odd–even effect was observed below 50°C, odd‐number PNDI‐Cxs (C3 and C5) crystallize slower than the adjacent even‐numbered PNDI‐Cxs (C4 and C6). Our work provides an insight to design flexible electronics by systematically tuning the mechanical properties through control of polymer crystallization by tuning backbone rigidity.more » « less
An official website of the United States government

