skip to main content

Title: Systolic-Array Spiking Neural Accelerators with Dynamic Heterogeneous Voltage Regulation
Spiking neural networks (SNNs) have emerged as a new generation of neural networks, presenting a brain-inspired event-driven model with advantages in spatiotemporal information processing. Due to the need for high power consumption of compute-intensive neural accelerators, adequate power delivery network (PDN) design is a key requirement to ensure power efficiency and integrity. However, PDN design for SNN accelerators has not been extensively studied despite its great potential benefit in energy efficiency. In this paper, we present the first study on dynamic heterogeneous voltage regulation (HVR) for spiking neural accelerators to maximize system energy efficiency while ensuring power integrity. We propose a novel sparse-workload-aware dynamic PDN control policy, which enables high energy efficiency of sparse spiking computation on a systolic array. By exploring sparse inputs and all-or-none nature of spiking computations for PDN control, we explore different types of PDNs to accelerate spiking convolutional neural networks (S-CNNs) trained with the dynamic vision sensor (DVS) gesture dataset. Furthermore, we demonstrate various power gating schemes to further optimize the proposed PDN architecture, which leads to a more than a three-fold reduction in total energy overhead for spiking neural computations on systolic array-based accelerators.  more » « less
Award ID(s):
2000851 1948201
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The 2021 International Joint Conference on Neural Networks (IJCNN)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With the growing performance and wide application of deep neural networks (DNNs), recent years have seen enormous efforts on DNN accelerator hardware design for platforms from mobile devices to data centers. The systolic array has been a popular architectural choice for many proposed DNN accelerators with hundreds to thousands of processing elements (PEs) for parallel computing. Systolic array-based DNN accelerators for datacenter applications have high power consumption and nonuniform workload distribution, which makes power delivery network (PDN) design challenging. Server-class multicore processors have benefited from distributed on-chip voltage regulation and heterogeneous voltage regulation (HVR) for improving energy efficiency while guaranteeing power delivery integrity. This paper presents the first work on HVR-based PDN architecture and control for systolic array-based DNN accelerators. We propose to employ a PDN architecture comprising heterogeneous on-chip and off-chip voltage regulators and multiple power domains. By analyzing patterns of typical DNN workloads via a modeling framework, we propose a DNN workload-aware dynamic PDN control policy to maximize system energy efficiency while ensuring power integrity. We demonstrate significant energy efficiency improvements brought by the proposed PDN architecture, dynamic control, and power gating, which lead to a more than five-fold reduction of leakage energy and PDN energy overhead for systolic array DNN accelerators. 
    more » « less
  2. Spiking Neural Networks (SNNs) are brain- inspired computing models incorporating unique temporal dynamics and event-driven processing. Rich dynamics in both space and time offer great challenges and opportunities for efficient processing of sparse spatiotemporal data compared with conventional artificial neural networks (ANNs). Specifically, the additional overheads for handling the added temporal dimension limit the computational capabilities of neuromorphic accelerators. Iterative processing at every time-point with sparse inputs in a temporally sequential manner not only degrades the utilization of the systolic array but also intensifies data movement.In this work, we propose a novel technique and architecture that significantly improve utilization and data movement while efficiently handling temporal sparsity of SNNs on systolic arrays. Unlike time-sequential processing in conventional SNN accelerators, we pack multiple time points into a single time window (TW) and process the computations induced by active synaptic inputs falling under several TWs in parallel, leading to the proposed parallel time batching. It allows weight reuse across multiple time points and enhances the utilization of the systolic array with reduced idling of processing elements, overcoming the irregularity of sparse firing activities. We optimize the granularity of time-domain processing, i.e., the TW size, which significantly impacts the data reuse and utilization. We further boost the utilization efficiency by simultaneously scheduling non-overlapping sparse spiking activities onto the array. The proposed architectures offer a unifying solution for general spiking neural networks with commonly exhibited temporal sparsity, a key challenge in hardware acceleration, delivering 248X energy-delay product (EDP) improvement on average compared to an SNN baseline for accelerating various networks. Compared to ANN based accelerators, our approach improves EDP by 47X on the CIFAR10 dataset. 
    more » « less
  3. Spiking neural networks (SNNs) offer a promising biologically-plausible computing model and lend themselves to ultra-low-power event-driven processing on neuromorphic processors. Compared with the conventional artificial neural networks, SNNs are well-suited for processing complex spatiotemporal data. Despite its significance, dataflow optimization of spiking neural accelerator architectures has not been extensively studied. Recognizing the need for efficient processing of complex spatiotemporal data while considering the all-or-none nature of spiking activities, we propose holistic reconfigurable dataflow optimization for systolic array acceleration of spiking convolutional networks (S-CNNs). A novel scheme is introduced for parallel acceleration of computation across multiple time points, which further allows for systemic optimization of variable tiling for a large performance and efficiency gains. We show how variable tiling, in particular, the positioning of the temporal dimension, can be targeted to optimize data movement, throughput, and energy efficiency. Furthermore, we explore joint layer-dependent dataflow and accelerator hardware optimization to further boost performance and energy efficiency. To support systemic design space exploration, we develop an SNN dataflow simulator capable of analyzing the throughput and energy dissipation of systolic array accelerators for any targeted S-CNN while considering the inherent spatiotemporal characteristics of spiking neural computation. The proposed techniques deliver orders of magnitude of improvements on throughput, energy efficiency, and delay-energy product for accelerating deep Alexnet and VGG-16 SNNs. 
    more » « less
  4. null (Ed.)
    Large Convolutional Neural Networks (CNNs) are often pruned and compressed to reduce the amount of parameters and memory requirement. However, the resulting irregularity in the sparse data makes it difficult for FPGA accelerators that contains systolic arrays of Multiply-and-Accumulate (MAC) units, such as Intel’s FPGA-based Deep Learning Accelerator (DLA), to achieve their maximum potential. Moreover, FPGAs with low-bandwidth off-chip memory could not satisfy the memory bandwidth requirement for sparse matrix computation. In this paper, we present 1) a sparse matrix packing technique that condenses sparse inputs and filters before feeding them into the systolic array of MAC units in the Intel DLA, and 2) a customization of the Intel DLA which allows the FPGA to efficiently utilize a high bandwidth memory (HBM2) integrated in the same package. For end-to-end inference with randomly pruned ResNet-50/MobileNet CNN models, our experiments demonstrate 2.7x/3x performance improvement compared to an FPGA with DDR4, 2.2x/2.1x speedup against a server-class Intel SkyLake CPU, and comparable performance with 1.7x/2x power efficiency gain as compared to an NVidia V100 GPU. 
    more » « less
  5. This paper addresses the design of accelerators using systolic architectures to train convolutional neural networks using a novel gradient interleaving approach. Training the neural network involves computation and backpropagation of gradients of error with respect to the activation functions and weights. It is shown that the gradient with respect to the activation function can be computed using a weight-stationary systolic array, while the gradient with respect to the weights can be computed using an output-stationary systolic array. The novelty of the proposed approach lies in interleaving the computations of these two gradients on the same configurable systolic array. This results in the reuse of the variables from one computation to the other and eliminates unnecessary memory accesses and energy consumption associated with these memory accesses. The proposed approach leads to 1.4−2.2× savings in terms of the number of cycles and 1.9× savings in terms of memory accesses in the fully-connected layer. Furthermore, the proposed method uses up to 25% fewer cycles and memory accesses, and 16% less energy than baseline implementations for state-of-the-art CNNs. Under iso-area comparisons, for Inception-v4, compared to weight-stationary (WS), Intergrad achieves 12% savings in energy, 17% savings in memory, and 4% savings in cycles. Savings for Densenet-264 are 18% , 26% , and 27% with respect to energy, memory, and cycles, respectively. Thus, the proposed novel accelerator architecture reduces the latency and energy consumption for training deep neural networks. 
    more » « less