Abstract Conventional drug discovery is expensive, time-consuming, and prone to failure. Artificial intelligence has become a potent substitute over the last decade, providing strong answers to challenging biological issues in this field. Among these difficulties, drug-target binding (DTB) is a key component of drug discovery techniques. In this context, drug-target affinity and drug–target interaction are complementary and essential frameworks that work together to improve our comprehension of DTB dynamics. In this work, we thoroughly analyze the most recent deep learning models, popular benchmark datasets, and assessment metrics for DTB prediction. We look at the paradigm shift in the development of drug discovery research since researchers started using deep learning as a potent tool for DTB prediction. In particular, we examine how methodologies have evolved, starting with early heterogeneous network-based approaches, progressing to graph-based approaches that were widely accepted, followed by modern attention-based architectures, and finally, the most recent multimodal approaches. We also provide case studies utilizing an extensive compound library against specific protein targets implicated in critical cancer pathways to demonstrate the usefulness of these approaches. In addition to summarizing the latest developments in DTB prediction models, this review also identifies their drawbacks. It also highlights the outlook for the DTB prediction domain and future research directions. Combined, these studies present a more comprehensive view of how deep learning offers a quantitative framework for researching drug-target relationships, speeding up the identification of new drug candidates and making it easier to identify possible DTBs.
more »
« less
MuSyC is a consensus framework that unifies multi-drug synergy metrics for combinatorial drug discovery
Abstract Drug combination discovery depends on reliable synergy metrics but no consensus exists on the correct synergy criterion to characterize combined interactions. The fragmented state of the field confounds analysis, impedes reproducibility, and delays clinical translation of potential combination treatments. Here we present a mass-action based formalism to quantify synergy. With this formalism, we clarify the relationship between the dominant drug synergy principles, and present a mapping of commonly used frameworks onto a unified synergy landscape. From this, we show how biases emerge due to intrinsic assumptions which hinder their broad applicability and impact the interpretation of synergy in discovery efforts. Specifically, we describe how traditional metrics mask consequential synergistic interactions, and contain biases dependent on the Hill-slope and maximal effect of single-drugs. We show how these biases systematically impact synergy classification in large combination screens, potentially misleading discovery efforts. Thus the proposed formalism can provide a consistent, unbiased interpretation of drug synergy, and accelerate the translatability of synergy studies.
more »
« less
- Award ID(s):
- 1942255
- PAR ID:
- 10281151
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Drug resistance is one of the fundamental challenges in modern medicine. Using combinations of drugs is an effective solution to counter drug resistance as is harder to develop resistance to multiple drugs simultaneously. Finding the correct dosage for each drug in the combination remains to be a challenging task. Testing all possible drug-drug combinations on various cell lines for different dosages in wet-lab experiments is infeasible since there are many combinations of drugs as well as their dosages yet the drugs and the cell lines are limited in availability and each wet-lab test is costly and time-consuming. Efficient and accurate in silico prediction methods are surely needed. Here we present a novel computational method, PartialFibers to address this challenge. Unlike existing prediction methods PartialFibers takes advantage of the distribution of the missing drug-drug interactions and effectively predicts the dosage of a drug in the combination. Our results on real datasets demonstrate that PartialFibers is more flexible, scalable, and achieves higher accuracy in less time than the state of the art algorithms.more » « less
-
Abstract MotivationThe identification and understanding of drug–target interactions (DTIs) play a pivotal role in the drug discovery and development process. Sequence representations of drugs and proteins in computational model offer advantages such as their widespread availability, easier input quality control, and reduced computational resource requirements. These make them an efficient and accessible tools for various computational biology and drug discovery applications. Many sequence-based DTI prediction methods have been developed over the years. Despite the advancement in methodology, cold start DTI prediction involving unknown drug or protein remains a challenging task, particularly for sequence-based models. Introducing DTI-LM, a novel framework leveraging advanced pretrained language models, we harness their exceptional context-capturing abilities along with neighborhood information to predict DTIs. DTI-LM is specifically designed to rely solely on sequence representations for drugs and proteins, aiming to bridge the gap between warm start and cold start predictions. ResultsLarge-scale experiments on four datasets show that DTI-LM can achieve state-of-the-art performance on DTI predictions. Notably, it excels in overcoming the common challenges faced by sequence-based models in cold start predictions for proteins, yielding impressive results. The incorporation of neighborhood information through a graph attention network further enhances prediction accuracy. Nevertheless, a disparity persists between cold start predictions for proteins and drugs. A detailed examination of DTI-LM reveals that language models exhibit contrasting capabilities in capturing similarities between drugs and proteins. Availability and implementationSource code is available at: https://github.com/compbiolabucf/DTI-LM.more » « less
-
Abstract Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution. Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial improvements in analyzing large-scale high-content images at high throughput. These efforts have facilitated understanding of compound mechanism of action, drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies encompassing feature engineering– and deep learning–based approaches, and introduce publicly available benchmark datasets. We place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery and highlight potential challenges and opportunities in this field.more » « less
-
Abstract Implantable, bioresorbable drug delivery systems offer an alternative to current drug administration techniques; allowing for patient‐tailored drug dosage, while also increasing patient compliance. Mechanistic mathematical modeling allows for the acceleration of the design of the release systems, and for prediction of physical anomalies that are not intuitive and may otherwise elude discovery. This study investigates short‐term drug release as a function of water‐mediated polymer phase inversion into a solid depot within hours to days, as well as long‐term hydrolysis‐mediated degradation and erosion of the implant over the next few weeks. Finite difference methods are used to model spatial and temporal changes in polymer phase inversion, solidification, and hydrolysis. Modeling reveals the impact of non‐uniform drug distribution, production and transport of H+ions, and localized polymer degradation on the diffusion of water, drug, and hydrolyzed polymer byproducts. Compared to experimental data, the computational model accurately predicts the drug release during the solidification of implants over days and drug release profiles over weeks from microspheres and implants. This work offers new insight into the impact of various parameters on drug release profiles, and is a new tool to accelerate the design process for release systems to meet a patient specific clinical need.more » « less
An official website of the United States government
