skip to main content

Title: Mechanistic Computational Modeling of Implantable, Bioresorbable Drug Release Systems

Implantable, bioresorbable drug delivery systems offer an alternative to current drug administration techniques; allowing for patient‐tailored drug dosage, while also increasing patient compliance. Mechanistic mathematical modeling allows for the acceleration of the design of the release systems, and for prediction of physical anomalies that are not intuitive and may otherwise elude discovery. This study investigates short‐term drug release as a function of water‐mediated polymer phase inversion into a solid depot within hours to days, as well as long‐term hydrolysis‐mediated degradation and erosion of the implant over the next few weeks. Finite difference methods are used to model spatial and temporal changes in polymer phase inversion, solidification, and hydrolysis. Modeling reveals the impact of non‐uniform drug distribution, production and transport of H+ions, and localized polymer degradation on the diffusion of water, drug, and hydrolyzed polymer byproducts. Compared to experimental data, the computational model accurately predicts the drug release during the solidification of implants over days and drug release profiles over weeks from microspheres and implants. This work offers new insight into the impact of various parameters on drug release profiles, and is a new tool to accelerate the design process for release systems to meet a patient specific clinical need.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Additive manufacturing (AM) appears poised to provide novel pharmaceutical technology and controlled release systems, yet understanding the effects of processing and post‐processing operations on pill design, quality, and performance remains a significant barrier. This paper reports a study of the relationship between programmed concentration profile and resultant temporal release profile using a 3D printed polypill system consisting of a Food and Drug Administration (FDA) approved excipient (Pluronic F‐127) and therapeutically relevant dosages of three commonly used oral agents for treatment of type 2 diabetes (300–500 mg per pill). A dual‐extrusion hydrogel microextrusion process enables the programming of three unique concentration profiles, including core–shell, multilayer, and gradient structures. Experimental and computational studies of diffusive mass transfer processes reveal that programmed concentration profiles are dynamic throughout both pill 3D printing and solidification. Spectrophotometric assays show that the temporal release profiles could be selectively programmed to exhibit delayed, pulsed, or constant profiles over a 5 h release period by utilizing the core–shell, multilayer, and gradient distributions, respectively. Ultimately, this work provides new insights into the mass transfer processes that affect design, quality, and performance of spatially graded controlled release systems, as well as demonstrating the potential to create disease‐specific polypill technology with programmable temporal release profiles.

    more » « less
  2. null (Ed.)
    Objectives/Hypothesis Novel laryngotracheal wound coverage devices are limited by complex anatomy, smooth surfaces, and dynamic pressure changes and airflow during breathing. We hypothesize that a bioinspired mucoadhesive patch mimicking how geckos climb smooth surfaces will permit sutureless wound coverage and also allow drug delivery. Study Design ex‐vivo. Methods Polycaprolactone (PCL) fibers were electrospun onto a substrate and polyethylene glycol (PEG) – acrylate flocks in varying densities were deposited to create a composite patch. Sample topography was assessed with laser profilometry, material stiffness with biaxial mechanical testing, and mucoadhesive testing determined cohesive material failure on porcine tracheal tissue. Degradation rate was measured over 21 days in vitro along with dexamethasone drug release profiles. Material handleability was evaluated via suture retention and in cadaveric larynges. Results Increased flocking density was inversely related to cohesive failure in mucoadhesive testing, with a flocking density of PCL‐PEG‐2XFLK increasing failure strength to 6880 ± 1810 Pa compared to 3028 ± 791 in PCL‐PEG‐4XFLK density and 1182 ± 262 in PCL‐PEG‐6XFLK density. The PCL‐PEG‐2XFLK specimens had a higher failure strength than PCL alone (1404 ± 545 Pa) or PCL‐PEG (2732 ± 840). Flocking progressively reduced composite stiffness from 1347 ± 15 to 763 ± 21 N/m. Degradation increased from 12% at 7 days to 16% after 10 days and 20% after 21 days. Cumulative dexamethasone release at 0.4 mg/cm2 concentration was maintained over 21 days. Optimized PCL‐PEG‐2XFLK density flocked patches were easy to maneuver endoscopically in laryngeal evaluation. Conclusions This novel, sutureless, patch is a mucoadhesive platform suitable to laryngeal and tracheal anatomy with drug delivery capability. 
    more » « less
  3. Abstract

    Transdermal drug delivery offers a promising alternative to traditional methods such as oral ingestion and hypodermic injection. Hypodermic injections are painful, while oral ingestion requires higher doses due to enzymatic degradation and poor absorption. While microneedles address the pain issue, they are limited to delivering small amounts of drugs and can be impractical due to peeling off with motion and sweat. Herein, this work proposes soft injectables using drug‐carrying sutures for painless and localized sustained delivery in the dermis. These sutures can remain in place during delivery and are suitable for all skin types. Surgical sutures can also serve as open capillary microfluidic channels carrying drug from a wearable drug reservoir to enable long‐term (weeks to months) transdermal drug delivery. The experiments focus on delivering 5‐fluorouracil (5‐FU), a cancer drug, and rhodamine B, a drug model. A fixed‐length suture of 60 cm delivers 0.43 mg of 5‐flurouracil in 15 min. The experiments also demonstrate a continuous drug delivery of rhodamine B for over 8 weeks at a rate of 0.0195 mL h−1. The results highlight that soft injectable sutures are promising candidates for long‐term sustained delivery of varying quantities of drugs over weeks period compared to hypodermic injection, oral ingestion, or microneedles.

    more » « less
  4. Abstract

    Hydrogels are under active development for controlled drug delivery, but their clinical translation is limited by low drug loading capacity, deficiencies in mechanical toughness and storage stability, and poor control over the drug release that often results in burst release and short release duration. This work reports a design of composite clay hydrogels, which simultaneously achieve a spectrum of mechanical, storage, and drug loading/releasing properties to address the critical needs from translational perspectives. The clay nanoparticles provide large surface areas to adsorb biological drugs, and assemble into microparticles that are physically trapped within and toughen hydrogel networks. The composite hydrogels demonstrate feasibility of storage, and extended release of large quantities of an insulin‐like growth factor‐1 mimetic protein (8 mg mL−1) over four weeks. The release rate is primarily governed by ionic exchange and can be upregulated by low pH, which is typical for injured tissues. A rodent model of Achilles tendon injury is used to demonstrate that the composite hydrogels allow for highly extended and localized release of biological drugs in vivo, while demonstrating biodegradation and biocompatibility. These attributes make the composite hydrogel a promising system for drug delivery and regenerative medicine.

    more » « less
  5. Developing a materials perspective of how to control the degradation and negative impact of complex metal oxides requires an integrated understanding of how these nanomaterials transform in the environment and interact with biological systems. Doping with aluminum is known to stabilize oxide materials, but has not been assessed cohesively from synthesis to environmental fate and biological impact. In the present study, the influence of aluminum doping on metal ion release from transition metal oxides was investigated by comparing aqueous transformations of lithium nickel cobalt aluminum oxide (LiNi0.82Co0.15Al0.03O2; NCA) and lithium nickel cobalt oxide (LiNi0.80Co0.20O2; NC) nanoparticles and by calculating the energetics of metal release using a density functional theory (DFT) and thermodynamics method. Two model environmental organisms were used to assess biological impact, and metal ion release was compared for NCA and NC nanoparticles incubated in their respective growth media: moderately hard reconstituted water (MHRW) for the freshwater invertebrate Daphnia magna (D. magna) and minimal growth medium for the Gram-negative bacterium Shewanella oneidensis MR-1 (S. oneidensis). The amount of metal ions released was reduced for NCA compared to NC in MHRW, which correlated to changes in the modeled energetics of release upon Al substitution in the lattice. In minimal medium, metal ion release was approximately an order of magnitude higher compared to MHRW and was similar to the stoichiometry of the bulk nanoparticles for both NCA and NC. Interpretation of the release profiles and modeling indicated that the increase in total metal ion release and the reduced influence of Al doping arises from lactate complexation of metal ions in solution. The relative biological impacts of NC and NCA exposure for both S. oneidensis and D. magna were consistent with the metal release trends observed for minimal medium and MHRW, respectively. Together, these results demonstrate how a combined experimental and computational approach provides valuable insight into the aqueous transformations and biological impacts of complex metal oxide nanoparticles. 
    more » « less