Living cells are out of equilibrium active materials. Cell-generated forces are transmitted across the cytoskeleton network and to the extracellular environment. These active force interactions shape cellular mechanical behavior, trigger mechano-sensing, regulate cell adaptation to the microenvironment and can affect disease outcomes. In recent years, the mechanobiology community has witnessed the emergence of many experimental and theoretical approaches to study cells as mechanically active materials. In this review, we highlight recent advancements in incorporating active characteristics of cellular behavior at different length scales into classic viscoelastic models by either adding an active tension-generating element or by adjusting the resting length of an elastic element in the model. Summarizing the two groups of approaches, we will review the formulation, and application of these models to understand cellular adaptation mechanisms in response to various types of mechanical stimuli, such as the effect of extracellular matrix properties and external loadings or deformations.
more »
« less
Mechanically Triggered Hybridization Chain Reaction
Abstract Cells transmit piconewton forces to receptors to mediate processes such as migration and immune recognition. A major challenge in quantifying such forces is the sparsity of cell mechanical events. Accordingly, molecular tension is typically quantified with high resolution fluorescence microscopy, which hinders widespread adoption and application. Here, we report a mechanically triggered hybridization chain reaction (mechano‐HCR) that allows chemical amplification of mechanical events. The amplification is triggered when a cell receptor mechanically denatures a duplex revealing a cryptic initiator to activate the HCR reaction in situ. Importantly, mechano‐HCR enables direct readout of pN forces using a plate reader. We leverage this capability and measured mechano‐IC50for aspirin, Y‐27632, and eptifibatide. Given that cell mechanical phenotypes are of clinical importance, mechano‐HCR may offer a convenient route for drug discovery, personalized medicine, and disease diagnosis.
more »
« less
- PAR ID:
- 10281164
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 36
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 19974-19981
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Polymer materials suffer mechano-oxidative deterioration or degradation in the presence of molecular oxygen and mechanical forces. In contrast, aerobic biological activities combined with mechanical stimulus promote tissue regeneration and repair in various organs. A synthetic approach in which molecular oxygen and mechanical energy synergistically initiate polymerization will afford similar robustness in polymeric materials. Herein, aerobic mechanochemical reversible-deactivation radical polymerization was developed by the design of an organic mechano-labile initiator which converts oxygen into activators in response to ball milling, enabling the reaction to proceed in the air with low-energy input, operative simplicity, and the avoidance of potentially harmful organic solvents. In addition, this approach not only complements the existing methods to access well-defined polymers but also has been successfully employed for the controlled polymerization of (meth)acrylates, styrenic monomers and solid acrylamides as well as the synthesis of polymer/perovskite hybrids without solvent at room temperature which are inaccessible by other means.more » « less
-
Abstract The mechanical degradation of polymers is typically limited to a single chain scission per triggering chain stretching event, and the loss of stress transfer that results from the scission limits the extent of degradation that can be achieved. Here, we report that the mechanically triggered ring-opening of a [4.2.0]bicyclooctene (BCOE) mechanophore sets up a delayed, force-free cascade lactonization that results in chain scission. Delayed chain scission allows many eventual scission events to be initiated within a single polymer chain. Ultrasonication of a 120 kDa BCOE copolymer mechanically remodels the polymer backbone, and subsequent lactonization slowly (~days) degrades the molecular weight to 4.4 kDa, > 10× smaller than control polymers in which lactonization is blocked. The force-coupled kinetics of ring-opening are probed by single molecule force spectroscopy, and mechanical degradation in the bulk is demonstrated. Delayed scission offers a strategy to enhanced mechanical degradation and programmed obsolescence in structural polymeric materials.more » « less
-
Abstract BackgroundIn the past few years, there has been an explosion in single-cell transcriptomics datasets, yet in vivo confirmation of these datasets is hampered in plants due to lack of robust validation methods. Likewise, modeling of plant development is hampered by paucity of spatial gene expression data. RNA fluorescence in situ hybridization (FISH) enables investigation of gene expression in the context of tissue type. Despite development of FISH methods for plants, easy and reliable whole mount FISH protocols have not yet been reported. ResultsWe adapt a 3-day whole mount RNA-FISH method for plant species based on a combination of prior protocols that employs hybridization chain reaction (HCR), which amplifies the probe signal in an antibody-free manner. Our whole mount HCR RNA-FISH method shows expected spatial signals with low background for gene transcripts with known spatial expression patterns in Arabidopsis inflorescences and monocot roots. It allows simultaneous detection of three transcripts in 3D. We also show that HCR RNA-FISH can be combined with endogenous fluorescent protein detection and with our improved immunohistochemistry (IHC) protocol. ConclusionsThe whole mount HCR RNA-FISH and IHC methods allow easy investigation of 3D spatial gene expression patterns in entire plant tissues.more » « less
-
Abstract Since the most recent outbreak, the Ebola virus (EBOV) epidemic remains one of the world’s public health and safety concerns. EBOV is a negative-sense RNA virus that can infect humans and non-human primates, and causes hemorrhagic fever. It has been proposed that the T-cell immunoglobulin and mucin domain (TIM) family proteins act as cell surface receptors for EBOV, and that the interaction between TIM and phosphatidylserine (PS) on the surface of EBOV mediates the EBOV–host cell attachment. Despite these initial findings, the biophysical properties of the TIM-EBOV interaction, such as the mechanical strength of the TIM-PS bond that allows the virus-cell interaction to resist external mechanical perturbations, have not yet been characterized. This study utilizes single-molecule force spectroscopy to quantify the specific interaction forces between TIM-1 or TIM-4 and the following binding partners: PS, EBOV virus-like particle, and EBOV glycoprotein/vesicular stomatitis virus pseudovirion. Depending on the loading rates, the unbinding forces between TIM and ligands ranged from 40 to 100 pN, suggesting that TIM-EBOV interactions are mechanically comparable to previously reported adhesion molecule–ligand interactions. The TIM-4–PS interaction is more resistant to mechanical force than the TIM-1–PS interaction. We have developed a simple model for virus–host cell interaction that is driven by its adhesion to cell surface receptors and resisted by membrane bending (or tension). Our model identifies critical dimensionless parameters representing the ratio of deformation and adhesion energies, showing how single-molecule adhesion measurements relate quantitatively to the mechanics of virus adhesion to the cell.more » « less