skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Active viscoelastic models for cell and tissue mechanics
Living cells are out of equilibrium active materials. Cell-generated forces are transmitted across the cytoskeleton network and to the extracellular environment. These active force interactions shape cellular mechanical behavior, trigger mechano-sensing, regulate cell adaptation to the microenvironment and can affect disease outcomes. In recent years, the mechanobiology community has witnessed the emergence of many experimental and theoretical approaches to study cells as mechanically active materials. In this review, we highlight recent advancements in incorporating active characteristics of cellular behavior at different length scales into classic viscoelastic models by either adding an active tension-generating element or by adjusting the resting length of an elastic element in the model. Summarizing the two groups of approaches, we will review the formulation, and application of these models to understand cellular adaptation mechanisms in response to various types of mechanical stimuli, such as the effect of extracellular matrix properties and external loadings or deformations.  more » « less
Award ID(s):
2143997
PAR ID:
10542184
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Royal Society Publishing
Date Published:
Journal Name:
Royal Society open science
ISSN:
2054-5703
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tissues grow and remodel in response to mechanical cues, extracellular and intracellular signals experienced through various biological events, from the developing embryo to disease and aging. The macroscale response of soft tissues is typically nonlinear, viscoelastic anisotropic, and often emerges from the hierarchical structure of tissues, primarily their biopolymer fiber networks at the microscale. The adaptation to mechanical cues is likewise a multiscale phenomenon. Cell mechanobiology, the ability of cells to transform mechanical inputs into chemical signaling inside the cell, and subsequent regulation of cellular behavior through intra- and inter-cellular signaling networks, is the key coupling at the microscale between the mechanical cues and the mechanical adaptation seen macroscopically. To fully understand mechanics of tissues in growth and remodeling as observed at the tissue level, multiscale models of tissue mechanobiology are essential. In this review, we summarize the state-of-the art modeling tools of soft tissues at both scales, the tissue level response, and the cell scale mechanobiology models. To help the interested reader become more familiar with these modeling frameworks, we also show representative examples. Our aim here is to bring together scientists from different disciplines and enable the future leap in multiscale modeling of tissue mechanobiology. 
    more » « less
  2. Living cells sense and respond to their extracellular environment. Their contact guidance is affected by the underlying substrate morphology. Previous studies of the effect of substrate pattern on the mechanical behavior of living cells were only limited to the quantification of the cellular elasticity. However, how the length and time scales of the cellular mechanical properties are affected by the patterned substrates have yet to be studied. In this study, the effect of the substrate morphology on the biomechanical behavior of living cells was thoroughly investigated using indentation-based atomic force microscopy. The results showed that the cellular biomechanical behavior was affected by the substrate morphology significantly. The elasticity and viscosity of the cells on the patterned PDMS substrates were much lower compared to those cultured on flat PDMS. The poroelastic diffusion coefficient of the cells was higher on the patterned PDMS substrates, specifically on the substrate with 2D pitches. In addition, fluorescence images showed that the substrate topography directly affects the cell cytoskeleton morphology. Together, the results suggested that cell mechanical behavior and morphology can be controlled using substrates with properly designed topography. 
    more » « less
  3. Bioengineered in vitro models of the kidney offer unprecedented opportunities to better mimic the in vivo microenvironment. Kidney-on-a-chip technology reproduces 2D or 3D features which can replicate features of the tissue architecture, composition, and dynamic mechanical forces experienced by cells in vivo. Kidney cells are exposed to mechanical stimuli such as substrate stiffness, shear stress, compression, and stretch, which regulate multiple cellular functions. Incorporating mechanical stimuli in kidney-on-a-chip is critically important for recapitulating the physiological or pathological microenvironment. This review will explore approaches to applying mechanical stimuli to different cell types using kidney-on-a-chip models and how these systems are used to study kidney physiology, model disease, and screen for drug toxicity. We further discuss sensor integration into kidney-on-a-chip for monitoring cellular responses to mechanical or other pathological stimuli. We discuss the advantages, limitations, and challenges associated with incorporating mechanical stimuli in kidney-on-a-chip models for a variety of applications. Overall, this review aims to highlight the importance of mechanical stimuli and sensor integration in the design and implementation of kidney-on-a-chip devices. 
    more » « less
  4. Cell–substrate interaction plays an important role in intracellular behavior and function. Adherent cell mechanics is directly regulated by the substrate mechanics. However, previous studies on the effect of substrate mechanics only focused on the stiffness relation between the substrate and the cells, and how the substrate stiffness affects the time-scale and length-scale of the cell mechanics has not yet been studied. The absence of this information directly limits the in-depth understanding of the cellular mechanotransduction process. In this study, the effect of substrate mechanics on the nonlinear biomechanical behavior of living cells was investigated using indentation-based atomic force microscopy. The mechanical properties and their nonlinearities of the cells cultured on four substrates with distinct mechanical properties were thoroughly investigated. Furthermore, the actin filament (F-actin) cytoskeleton of the cells was fluorescently stained to investigate the adaptation of F-actin cytoskeleton structure to the substrate mechanics. It was found that living cells sense and adapt to substrate mechanics: the cellular Young’s modulus, shear modulus, apparent viscosity, and their nonlinearities (mechanical property vs. measurement depth relation) were adapted to the substrates’ nonlinear mechanics. Moreover, the positive correlation between the cellular poroelasticity and the indentation remained the same regardless of the substrate stiffness nonlinearity, but was indeed more pronounced for the cells seeded on the softer substrates. Comparison of the F-actin cytoskeleton morphology confirmed that the substrate affects the cell mechanics by regulating the intracellular structure. 
    more » « less
  5. Abstract Purpose of ReviewInterfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. Recent FindingsCues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. SummaryIn this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic. 
    more » « less