skip to main content


Title: The Sivers asymmetry in hadronic dijet production
A bstract We study the single spin asymmetry in the back-to-back dijet production in transversely polarized proton-proton collisions. Such an asymmetry is generated by the Sivers functions in the incoming polarized proton. We propose a QCD formalism in terms of the transverse momentum dependent parton distribution functions, which allow us to resum the large logarithms that arise in the perturbative calculations. We make predictions for the Sivers asymmetry of hadronic dijet production at the kinematic region that is relevant to the experiment at the Relativistic Heavy Ion Collider (RHIC). We further compute the spin asymmetries in the selected positive and negative jet charge bins, to separate the contributions from u - and d -quark Sivers functions. We find that both the sign and size of our numerical results are roughly consistent with the preliminary results from the STAR collaboration at the RHIC.  more » « less
Award ID(s):
1945471
NSF-PAR ID:
10281179
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract Using Soft-Collinear Effective Theory, we develop the transverse-momentum-dependent factorization formalism for heavy flavor dijet production in polarized-proton-electron collisions. We consider heavy flavor mass corrections in the collinear-soft and jet functions, as well as the associated evolution equations. Using this formalism, we generate a prediction for the gluon Sivers asymmetry for charm and bottom dijet production at the future Electron-Ion Collider. Furthermore, we compare theoretical predictions with and without the inclusion of finite quark masses. We find that the heavy flavor mass effects can give sizable corrections to the predicted asymmetry. 
    more » « less
  2. null (Ed.)
    A bstract We perform global fit to the quark Sivers function within the transverse momentum dependent (TMD) factorization formalism in QCD. We simultaneously fit Sivers asymmetry data from Semi-Inclusive Deep Inelastic Scattering (SIDIS) at COMPASS, HERMES, and JLab, from Drell-Yan lepton pair production at COMPASS, and from W/Z boson at RHIC. This extraction is performed at next-to-leading order (NLO) and next-to-next-to leading logarithmic (NNLL) accuracy. We find excellent agreement between our extracted asymmetry and the experimental data for SIDIS and Drell-Yan lepton pair production, while tension arises when trying to describe the spin asymmetries of W/Z bosons at RHIC. We carefully assess the situation, and we study in details the impact of the RHIC data and their implications through different ways of performing the fit. In addition, we find that the quality of the description of W/Z vector boson asymmetry data could be strongly sensitive to the DGLAP evolution of Qiu-Sterman function, besides the usual TMD evolution. We present discussion on this and the implications for measurements of the transverse-spin asymmetries at the future Electron Ion Collider. 
    more » « less
  3. A bstract We study all the possible spin asymmetries that can arise in back-to-back electron-jet production, ep → e + jet + X , as well as the associated jet fragmentation process, ep → e +jet( h )+ X , in electron-proton collisions. We derive the factorization formalism for these spin asymmetries and perform the corresponding phenomenology for the kinematics relevant to the future electron ion collider. In the case of unpolarized electron-proton scattering, we also give predictions for azimuthal asymmetries for the HERA experiment. This demonstrates that electron-jet production is an outstanding process for probing unpolarized and polarized transverse momentum dependent parton distribution functions and fragmentation functions. 
    more » « less
  4. null (Ed.)
    A bstract We report on the measurement of the Central Exclusive Production of charged particle pairs h + h − ( h = π, K, p ) with the STAR detector at RHIC in proton-proton collisions at $$ \sqrt{s} $$ s = 200 GeV. The charged particle pairs produced in the reaction pp → p ′ + h + h − + p ′ are reconstructed from the tracks in the central detector and identified using the specific energy loss and the time of flight method, while the forward-scattered protons are measured in the Roman Pot system. Exclusivity of the event is guaranteed by requiring the transverse momentum balance of all four final-state particles. Differential cross sections are measured as functions of observables related to the central hadronic final state and to the forward-scattered protons. They are measured in a fiducial region corresponding to the acceptance of the STAR detector and determined by the central particles’ transverse momenta and pseudorapidities as well as by the forward-scattered protons’ momenta. This fiducial region roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range 0 . 04 GeV 2 < −t 1 , −t 2 < 0 . 2 GeV 2 , invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range |η| < 0 . 7. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of π + π − and K + K − pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to π + π − production. For π + π − production, the fiducial cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the f 0 (980), f 2 (1270) and f 0 (1500), with a possible small contribution from the f 0 (1370). Fits to the extrapolated differential cross section as a function of t 1 and t 2 enable extraction of the exponential slope parameters in several bins of the invariant mass of π + π − pairs. These parameters are sensitive to the size of the interaction region. 
    more » « less
  5. null (Ed.)
    A bstract We perform a global fit of the available polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS), polarized pion-induced Drell-Yan (DY) and W ± /Z boson production data at N 3 LO and NNLO accuracy of the Transverse Momentum Dependent (TMD) evolution, and extract the Sivers function for u , d , s and for sea quarks. The Qiu-Sterman function is determined in a model independent way via the operator product expansion from the extracted Sivers function. The analysis is supplemented by additional studies, such as the estimation of applicability region, the impact of the unpolarized distributions’ uncertainties, the universality of the Sivers functions, positivity constraints, the significance of the sign-change relation, and the comparison with the existing extractions. 
    more » « less