Post-disaster field observations of the built environment are critical for advancing fundamental research that links hazard data to structural performance, cascading community impacts, and the development of effective mitigation strategies. Yet, data collection remain fragmented across hazard types and infrastructure systems due to varying objectives, methodologies, protocols, and standards among investigators and organizations. To address this, a Unified Assessment Framework has been developed for standardized post-disaster hazard and structural assessment data and metadata collection across multiple natural hazards (earthquake, windstorm, coastal events) and infrastructure typologies. The framework encompasses a tiered performance assessment structure with increasing rigor and fidelity levels: Basic Assessment (BA), Load Path Assessment (LPA), and Detailed Component Assessment (DCA). The framework has been implemented as an open-access mobile application, the Structural Extreme Events Reconnaissance (StEER) Network’s StEER Unified App, hosted on Fulcrum data collection platform . Along with unification of data fields, preliminary mapping rules were developed to map out existing hazard-specific damage rating scales (e.g., wind, surge/flooding, rainwater ingress) to the European Macroseismic Scale (EMS-98) compatible unified damage scale, enabling consolidation of global damage ratings into a common data field, facilitating the unification of multiple hazards within a single app. In the mapping of damage ratings, overarching level definitions were retained (e.g., slight, moderate, severe damage) while customizing the specific descriptors to reflect hazard-specific damage mechanisms. Two use cases are presented to demonstrate the application of this framework through the StEER Unified App: a supervised pilot after the 2022 Hurricane Ian, Florida and an unsupervised deployment for the 2023 Turkey earthquake sequence. These deployments illustrate the framework’s flexibility and scalability, validate the feasibility of standardized assessments, and offer insights into how data quality is influenced by assessor pre-deployment training and assessment tier—particularly for complex tasks such as load path evaluation. This work advances the field by providing a scalable, standardized, and hazard-agnostic approach to structural field reconnaissance. The open-access framework and app support real-time deployments and enable integration of legacy datasets into a unified platform—laying the foundation for longitudinal analyses, cross-hazard comparisons, and expanded data reuse in the Natural Hazards Engineering community.
more »
« less
Performance-Based Coastal Engineering Framework
The changing dynamics of coastal regions and climate pose severe challenges to coastal communities around the world. Effective planning of engineering projects and resilience strategies in coastal regions must not only address current conditions but also take into consideration the expected changes in the exposure and multi-hazard risk in these areas. However, existing performance-based engineering frameworks generally neglect time-varying factors and miss the opportunity to leverage related evidence as it becomes available. This paper proposes a Performance-Based Coastal Engineering (PBCE) framework that is flexible enough to accommodate uncertain time-varying factors, multi-hazard conditions, and cascading-effects. Furthermore, using a dynamic Bayesian network approach, the framework can incorporate observed evidence into the model to update the prior conditional distribution of the analyzed variables. As a proof of concept, two case studies—a typical elevated residential structure and a two-frame system—are presented, considering the effects of cascading failure, the incorporation of time-varying factors, and the influence of emerging evidence. Results show that neglecting cascading effects significantly underestimates the losses and that the incorporation of evidence reduces the uncertainty under the assumed distribution of evidence. The resulting PBCE framework can support data collection efforts, optimization of retrofitting strategies, integration of experts and community interests by facilitating interactions and knowledge sharing, as well as the identification of vulnerable regions and critical components in coastal multi-hazard regions.
more »
« less
- Award ID(s):
- 2002522
- PAR ID:
- 10281295
- Date Published:
- Journal Name:
- Frontiers in Built Environment
- Volume:
- 7
- ISSN:
- 2297-3362
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Natural hazards, including hurricanes and earthquakes, can escalate into catastrophic societal events due to the destruction of the built environment. To minimize the impact of such hazards on vulnerable communities, civil infrastructure must be designed with performance criteria that prioritize public safety and ensure continuous operation. The National Science Foundation funded Natural Hazards Engineering Research Infrastructure (NHERI) program focuses on advancing the development of resilient infrastructure. The NHERI Lehigh Real-time Multi-directional Simulation Experimental Facility (EF) is one of the facilities within this program. The facility serves as an open-access research hub, offering advanced technologies and engineering tools to develop innovative solutions for natural hazard mitigation. It is uniquely equipped to perform large-scale, multi-directional structural testing in real-time using a cyber-physical simulation technique known as real-time hybrid simulation. This technique enables researchers to model entire systems subjected to dynamic loads at a full scale, allowing for realistic assessments of infrastructure responses to specific hazard scenarios and the development of effective mitigation strategies. This paper explores how cyber-physical simulation has revolutionized research in natural hazards engineering and its influence on engineering practices. It highlights several ongoing projects at the NHERI Lehigh EF aimed at enhancing community resilience in hazard-prone regions. The paper also discusses the planned expansion of the EF, which aims to broaden its focus to include a wider range of natural hazards, and infrastructure systems. This expansion will incorporate both physical and computational resources to enhance the understanding of fluid interactions in combined natural hazards and climate change impacts on coastal and offshore infrastructure. The NHERI Lehigh EF represents a transformative facility that is reshaping natural hazards research and will continue to play a pivotal role in the development of risk management strategies for more resilient communities.more » « less
-
Abstract The thawing of permafrost in the Arctic has led to an increase in coastal land loss, flooding, and ground subsidence, seriously threatening civil infrastructure and coastal communities. However, a lack of tools for synthetic hazard assessment of the Arctic coast has hindered effective response measures. We developed a holistic framework, the Arctic Coastal Hazard Index (ACHI), to assess the vulnerability of Arctic coasts to permafrost thawing, coastal erosion, and coastal flooding. We quantified the coastal permafrost thaw potential (PTP) through regional assessment of thaw subsidence using ground settlement index. The calculations of the ground settlement index involve utilizing projections of permafrost conditions, including future regional mean annual ground temperature, active layer thickness, and talik thickness. The predicted thaw subsidence was validated through a comparison with observed long-term subsidence data. The ACHI incorporates the PTP into seven physical and ecological variables for coastal hazard assessment: shoreline type, habitat, relief, wind exposure, wave exposure, surge potential, and sea-level rise. The coastal hazard assessment was conducted for each 1 km2coastline of North Slope Borough, Alaska in the 2060s under the Representative Concentration Pathway 4.5 and 8.5 forcing scenarios. The areas that are prone to coastal hazards were identified by mapping the distribution pattern of the ACHI. The calculated coastal hazards potential was subjected to validation by comparing it with the observed and historical long-term coastal erosion mean rates. This framework for Arctic coastal assessment may assist policy and decision-making for adaptation, mitigation strategies, and civil infrastructure planning.more » « less
-
Since its founding in 2018, the Structural Extreme Events Reconnaissance (StEER) Network has worked to deepen the capacity of the Natural Hazards Engineering (NHE) community for coordinated and standardized assessments of the performance of the built environment following natural hazard events. This paper positions StEER within the field of engineering reconnaissance and the Natural Hazards Engineering Research Infrastructure (NHERI), outlining its organizational model for coordinated community-led responses to wind, seismic, and coastal hazard events. The paper’s examination of StEER’s event response workflow, engaging a range of hardware and delivering a suite of products, demonstrates StEER’s contributions in the areas of: workflow and data standardization, data reliability to enable field-observation-driven research & development, efficiency in data collection and dissemination to speed knowledge sharing, near-real- time open data access for enhanced coordination and transparency, and flexibility in collaboration modes to reduce the “overhead” associated with reconnaissance and foster broad NHE community engagement in event responses as part of field and virtual assessment structural teams (FAST/VAST). StEER’s creation of efficient systems to deliver well-documented, reliable data suitable for diverse re-uses as well as rapidly disseminated synopses of the impact of natural hazard events on the built environment provide a distinctive complement to existing post-event reconnaissance initiatives. The implementation of these policies, protocols and workflows is then demonstrated with case studies from five events illustrating StEER’s different field response strategies: the Nashville, Tennessee Tornadoes (2020) – a Hazard Gradient Survey; the Palu Earthquake and Tsunami in Indonesia (2018) – a Representative Performance Study; the Puerto Rico Earthquakes (2019/2020) – using Targeted Case Studies; Hurricane Laura (2020) – leveraging Rapid Surveys to enable virtual assessments; and Hurricane Dorian (2019) in the Bahamas – a Phased Multi-Hazard Investigation. The use of these strategies has enabled StEER to respond to 36 natural hazard events, involving over 150 different individuals to produce 45 published reports/briefings, over 5000 publicly available app-based structural assessments, and over 1600 km (1000 mi) of street-level panoramic imagery in its first 2years of operation.more » « less
-
Abstract Coastal communities are increasingly vulnerable to hurricanes, which cause billions of dollars in damage annually through wind, storm surge, and flooding. Mitigation efforts are essential to reduce these impacts but face significant challenges, including uncertainties in hazard prediction, damage estimation, and recovery costs. Resource constraints and the disproportionate burden borne by socioeconomically vulnerable groups further complicate retrofitting strategies. This study presents a probabilistic methodology to assess and mitigate hurricane risks by integrating hazard analysis, building fragility, and economic loss assessment. The methodology prioritizes retrofitting strategies using a risk‐informed, equity‐focused approach. Multi‐objective optimization balances cost‐effectiveness and risk reduction while promoting fair resource allocation among socioeconomic groups. The novelty of this study lies in its direct integration of equity as an objective in resource allocation through multi‐objective optimization, its comprehensive consideration of multi‐hazard risks, its inclusion of both direct and indirect losses in cost assessments, and its use of probabilistic hazard analysis to incorporate varying time horizons. A case study of the Galveston testbed demonstrates the methodology's potential to minimize damage and foster equitable resilience. Analysis of budget scenarios and trade‐offs between cost and equity underscores the importance of comprehensive loss assessments and equity considerations in mitigation and resilience planning. Key findings highlight the varied effectiveness of retrofitting strategies across different budgets and time horizons, the necessity of addressing both direct and indirect losses, and the importance of multi‐hazard considerations for accurate risk assessments. Multi‐objective optimization underscores that equitable solutions are achievable even under constrained budgets. Beyond a certain point, achieving equity does not necessarily increase expected losses, demonstrating that more equitable solutions can be implemented without compromising overall cost‐effectiveness.more » « less
An official website of the United States government

