skip to main content

Title: A study of events with photoelectric emission in the DarkSide-50 liquid argon Time Projection Chamber
Finding unambiguous evidence of dark matter interactions in a particle detector is a main objective of physics research. The liquid argon time projection chamber technique for the detection of Weakly Interacting Massive Particles (WIMP) allows sensitivities down to the so-called neutrino floor for high and low WIMP masses. Based on the successful operation of the DarkSide-50 detector, a new and more sensitive experiment, DarkSide-20k, was designed and is now under construction. A thorough understanding of the DarkSide-50 detector response to events classified as dark matter as well as all other interactions is essential for an optimal design of the new experiment. In this paper, we report on a particular set of events, for which scintillation-ionization signals are observed in association with signals from single or few isolated electrons. We identified and provided an interpretation for two event types in which electrons are produced via photoelectric effect on the cathode electrode and in the bulk liquid. Events with photoelectric emissions are observed in association with most interactions with large energy depositions in the detector. From the measured rate of these events, we determine the photo-ionization probability, or photoelectric quantum efficiency, of tetraphenyl butadiene (TPB) at wavelengths around 128 nm.
Authors:
 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1812492 1622345
Publication Date:
NSF-PAR ID:
10281347
Journal Name:
ArXivorg
Volume:
eprint arXiv:2107.08015
ISSN:
2331-8422
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We demonstrate a new type of analysis for the DRIFT-IId directional dark matter detector using a machine learning algorithm called a Random Forest Classifier. The analysis labels events as signal or background based on a series of selection parameters, rather than solely applying hard cuts. The analysis efficiency is shown to be comparable to our previous result at high energy but with increased efficiency at lower energies. This leads to a projected sensitivity enhancement of one order of magnitude below a WIMP mass of 15 GeV c -2 and a projected sensitivity limit that reaches down to a WIMPmore »mass of 9 GeV c -2 , which is a first for a directionally sensitive dark matter detector.« less
  2. Ultra-high-energy (UHE) photons are an important tool for studying the high-energy Universe. A plausible source of photons with exa-eV (EeV) energy is provided by UHE cosmic rays (UHECRs) undergoing the Greisen–Zatsepin–Kuzmin process (Greisen 1966; Zatsepin & Kuzmin 1966) or pair production process (Blumenthal 1970) on a cosmic background radiation. In this context, the EeV photons can be a probe of both UHECR mass composition and the distribution of their sources (Gelmini, Kalashev & Semikoz 2008; Hooper, Taylor & Sarkar 2011). At the same time, the possible flux of photons produced by UHE protons in the vicinity of their sources bymore »pion photoproduction or inelastic nuclear collisions would be noticeable only for relatively near sources, as the attenuation length of UHE photons is smaller than that of UHE protons; see, for example, Bhattacharjee & Sigl (2000) for a review. There also exists a class of so-called top-down models of UHECR generation that efficiently produce the UHE photons, for instance by the decay of heavy dark-matter particles (Berezinsky, Kachelriess & Vilenkin 1997; Kuzmin & Rubakov 1998) or by the radiation from cosmic strings (Berezinsky, Blasi & Vilenkin 1998). The search for the UHE photons was shown to be the most sensitive method of indirect detection of heavy dark matter (Kalashev & Kuznetsov 2016, 2017; Kuznetsov 2017; Kachelriess, Kalashev & Kuznetsov 2018; Alcantara, Anchordoqui & Soriano 2019). Another fundamental physics scenario that could be tested with UHE photons (Fairbairn, Rashba & Troitsky 2011) is the photon mixing with axion-like particles (Raffelt & Stodolsky 1988), which could be responsible for the correlation of UHECR events with BL Lac type objects observed by the High Resolution Fly’s Eye (HiRes) experiment (Gorbunov et al. 2004; Abbasi et al. 2006). In most of these scenarios, a clustering of photon arrival directions, rather than diffuse distribution, is expected, so point-source searches can be a suitable test for photon - axion-like particle mixing models. Finally, UHE photons could also be used as a probe for the models of Lorentz-invariance violation (Coleman & Glashow 1999; Galaverni & Sigl 2008; Maccione, Liberati & Sigl 2010; Rubtsov, Satunin & Sibiryakov 2012, 2014). The Telescope Array (TA; Tokuno et al. 2012; Abu-Zayyad et al. 2013c) is the largest cosmic ray experiment in the Northern Hemisphere. It is located at 39.3° N, 112.9° W in Utah, USA. The observatory includes a surface detector array (SD) and 38 fluorescence telescopes grouped into three stations. The SD consists of 507 stations that contain plastic scintillators, each with an area of 3 m2 (SD stations). The stations are placed in the square grid with 1.2 km spacing and cover an area of ∼700 km2. The TA SD is capable of detecting extensive air showers (EASs) in the atmosphere caused by cosmic particles of EeV and higher energies. The TA SD has been operating since 2008 May. A hadron-induced EAS significantly differs from an EAS induced by a photon because the depth of the shower maximum Xmax for a photon shower is larger, and a photon shower contains fewer muons and has a more curved front (see Risse & Homola 2007 for a review). The TA SD stations are sensitive to both muon and electromagnetic components of the shower and therefore can be triggered by both hadron-induced and photon-induced EAS events. In the present study, we use 9 yr of TA SD data for a blind search for point sources of UHE photons. We utilize the statistics of the SD data, which benefit from a high duty cycle. The full Monte Carlo (MC) simulation of proton-induced and photon-induced EAS events allows us to perform the photon search up to the highest accessible energies, E ≳ 1020 eV. As the main tool for the present photon search, we use a multivariate analysis based on a number of SD parameters that make it possible to distinguish between photon and hadron primaries. While searches for diffuse UHE photons were performed by several EAS experiments, including Haverah Park (Ave et al. 2000), AGASA (Shinozaki et al. 2002; Risse et al. 2005), Yakutsk (Rubtsov et al. 2006; Glushkov et al. 2007, 2010), Pierre Auger (Abraham et al. 2007, 2008a; Bleve 2016; Aab et al. 2017c) and TA (Abu-Zayyad et al. 2013b; Abbasi et al. 2019a), the search for point sources of UHE photons has been done only by the Pierre Auger Observatory (Aab et al. 2014, 2017a). The latter searches were based on hybrid data and were limited to the 1017.3 < E < 1018.5 eV energy range. In the present paper, we use the TA SD data alone. We perform the searches in five energy ranges: E > 1018, E > 1018.5, E > 1019, E > 1019.5 and E > 1020 eV. We find no significant evidence of photon point sources in all energy ranges and we set the point-source flux upper limits from each direction in the TA field of view (FOV). The search for unspecified neutral particles was also previously performed by the TA (Abbasi et al. 2015). The limit on the point-source flux of neutral particles obtained in that work is close to the present photon point-source flux limits.« less
  3. A bstract Neutrino non-standard interactions (NSI) with the first generation of standard model fermions can span a parameter space of large dimension and exhibit degeneracies that cannot be broken by a single class of experiment. Oscillation experiments, together with neutrino scattering experiments, can merge their observations into a highly informational dataset to combat this problem. We consider combining neutrino-electron and neutrino-nucleus scattering data from the Borexino and COHERENT experiments, including a projection for the upcoming coherent neutrino scattering measurement at the CENNS-10 liquid argon detector. We extend the reach of these data sets over the NSI parameter space with projectionsmore »for neutrino scattering at a future multi-ton scale dark matter detector and future oscillation measurements from atmospheric neutrinos at the Deep Underground Neutrino Experiment (DUNE). In order to perform this global anal- ysis, we adopt a novel approach using the copula method, utilized to combine posterior information from different experiments with a large, generalized set of NSI parameters. We find that the contributions from DUNE and a dark matter detector to the Borexino and COHERENT fits can improve constraints on the electron and quark NSI parameters by up to a factor of 2 to 3, even when relatively many NSI parameters are left free to vary in the analysis.« less
  4. We present new constraints on dark matter interactions using 1.7 years of COSINE-100 data. The COSINE-100 experiment, consisting of 106 kg of tallium-doped sodium iodide [NaI(Tl)] target material, is aimed to test DAMA’s claim of dark matter observation using the same NaI(Tl) detectors. Improved event selection requirements, a more precise understanding of the detector background, and the use of a larger dataset considerably enhance the COSINE-100 sensitivity for dark matter detection. No signal consistent with the dark matter interaction is identified and rules out model-dependent dark matter interpretations of the DAMA signals in the specific context of standard halo modelmore »with the same NaI(Tl) target for various interaction hypotheses.« less
  5. The SABRE (Sodium-iodide with Active Background REjection) experiment is a new detector based on NaI(Tl) scintillating crystals for the dark matter detection through the annual modulation. With ultra-pure crystals and an active veto system, based on liquid scintillator surrounding the crystal array, SABRE will reach unprecedented low background and the highest sensitivity among the present NaI(Tl) experiments. Moreover SABRE will be the first dark matter search with twin detectors located in the North and South hemispheres, in Gran Sasso National Laboratories (LNGS), Italy, and Stawell Underground Laboratories (SUPL), Australia, respectively. The double location will help to quantify possible seasonal effects,more »and is a unique feature to identify a modulation of dark matter origins. SABRE is presently in the Proof-of-Principle (PoP) phase, with the goal to measure the crystal intrinsic and cosmogenic backgrounds of one 5 kg crystal and the active veto efficiency. We have performed a full geometry Monte Carlo simulation in order to evaluate the background contributions in the two distinct operation modes foreseen for the PoP: the potassium Measurement Mode (KMM) and the Dark Matter Measurement Mode (DMM), where the liquid scintillator detector is used in coincidence or anti-coincidence with the crystal, respectively. This paper presents the results of a detailed background simulation and the expected sensitivity for the SABRE full scale experiment.« less