This content will become publicly available on December 1, 2025
Title: DarkSide-20k sensitivity to light dark matter particles
The dual-phase liquid argon time projection chamber is presently one of the leading technologies to search for dark matter particles with masses below 10 GeV c−2. This was demonstrated by the DarkSide-50 experiment with approximately 50 kg of low-radioactivity liquid argon as target material. The next generation experiment DarkSide-20k, currently under construction, will use 1,000 times more argon and is expected to start operation in 2027. Based on the DarkSide-50 experience, here we assess the DarkSide-20k sensitivity to models predicting light dark matter particles, including Weakly Interacting Massive Particles (WIMPs) and sub-GeV c−2 particles interacting with electrons in argon atoms. With one year of data, a sensitivity improvement to dark matter interaction cross-sections by at least one order of magnitude with respect to DarkSide-50 is expected for all these models. A sensitivity to WIMP–nucleon interaction cross-sections below 1 × 10−42 cm2 is achievable for WIMP masses above 800 MeV c−2. With 10 years exposure, the neutrino fog can be reached for WIMP masses around 5 GeV c−2. more »« less
The DarkSide-50 Collaboration) Agnes, P.; Albuquerque, I. F.; Alexander, T.; Alton, A. K.; Ave, M.; Back, H. O.; Batignani, G.; Biery, K.; Bocci, V.; Bonivento, W. M.; et al
(, ArXivorg)
null
(Ed.)
Finding unambiguous evidence of dark matter interactions in a particle detector is a main objective of physics research. The liquid argon time projection chamber technique for the detection of Weakly Interacting Massive Particles (WIMP) allows sensitivities down to the so-called neutrino floor for high and low WIMP masses. Based on the successful operation of the DarkSide-50 detector, a new and more sensitive experiment, DarkSide-20k, was designed and is now under construction. A thorough understanding of the DarkSide-50 detector response to events classified as dark matter as well as all other interactions is essential for an optimal design of the new experiment. In this paper, we report on a particular set of events, for which scintillation-ionization signals are observed in association with signals from single or few isolated electrons. We identified and provided an interpretation for two event types in which electrons are produced via photoelectric effect on the cathode electrode and in the bulk liquid. Events with photoelectric emissions are observed in association with most interactions with large energy depositions in the detector. From the measured rate of these events, we determine the photo-ionization probability, or photoelectric quantum efficiency, of tetraphenyl butadiene (TPB) at wavelengths around 128 nm.
Acerbi, F; Adhikari, P; Agnes, P; Ahmad, I; Albergo, S; Albuquerque, I F; Alexander, T; Alton, A K; Amaudruz, P; Angiolilli, M; et al
(, The European Physical Journal C)
Abstract DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with 50 tonnes of low radioactivity underground argon (UAr) acting as the WIMP target. NUV-HD-cryo Silicon Photomultipliers (SiPM)s designed by Fondazione Bruno Kessler (FBK) (Trento, Italy) were selected as the photon sensors covering two$$10.5~\text {m}^2$$ Optical Planes, one at each end of the TPC, and a total of$$5~\text {m}^2$$ photosensitive surface for the liquid argon veto detectors. This paper describes the Quality Assurance and Quality Control (QA/QC) plan and procedures accompanying the production of FBK NUV-HD-cryo SiPM wafers manufactured by LFoundry s.r.l. (Avezzano, AQ, Italy). SiPM characteristics are measured at 77 K at the wafer level with a custom-designed probe station. As of March 2025, 1314 of the 1400 production wafers (94% of the total) for DarkSide-20k were tested. The wafer yield is$$93.2\pm 2.5$$ %, which exceeds the 80% specification defined in the original DarkSide-20k production plan.
Agnes, P; Back, H O; Bonivento, W; Boulay, M G; Canci, N; Caravati, M; Cebrian, S; Cocco, V; Diaz_Mairena, D; Franco, D; et al
(, Frontiers in Physics)
The existence of dark matter in the universe is inferred from abundant astrophysical and cosmological observations. The Global Argon Dark Matter Collaboration (GADMC) aims to perform the searches for dark matter in the form of weakly interacting massive particles (WIMPs), whose collisions with argon nuclei would produce nuclear recoils with tens of keV energy. Argon has been considered an excellent medium for the direct detection of WIMPs as argon-based scintillation detectors can make use of pulse shape discrimination (PSD) to separate WIMP-induced nuclear recoil signals from electron recoil backgrounds with extremely high efficiency. However, argon-based direct dark matter searches must confront the presence of intrinsic39Ar as the predominant source of electron recoil backgrounds (it is a beta-emitter with an endpoint energy of 565 keV and half-life of 269 years). Even with PSD, the39Ar activity in atmospheric argon (AAr), mainly produced and maintained by cosmic ray-induced nuclear reactions, limits the ultimate size of argon-based detectors and restricts their ability to probe very-low-energy events. The discovery of argon from deep underground wells with significantly less39Ar than that in AAr was an important step in the development of direct dark matter detection experiments using argon as the active target. Thanks to pioneering research and successful R&D, in 2012, the first 160 kg batch of underground argon (UAr) was extracted from a CO2well in Cortez, Colorado. The DarkSide-50 experiment at the Gran Sasso National Laboratory (LNGS) in Italy, the first liquid argon detector ever operated with a UAr target, demonstrated a ∼ 1,400 suppression of the39Ar activity with respect to the atmospheric argon. An even larger suppression is expected for42Ar (another intrinsic beta-emitter with the42K daughter isotope, also a beta-emitter) as its production is expected mainly in the upper atmosphere. Following the results of DarkSide-50, the GADMC initiated the UAr project for extraction from underground and cryogenic purification of 100 t of argon to be used as a target in the next-generation experiment DarkSide-20k. This paper contains a description of the Urania Plant in Cortez, Colorado, where UAr is extracted; the Aria Plant in Sardinia, Italy, an industrial-scale plant comprising a 350-m state-of-the-art cryogenic isotopic distillation column, designed for further purification of the extracted argon and further reduction of the isotopic abundance of39Ar; and DArT, a facility for UAr radiopurity qualification at the Canfranc Underground Laboratory (LSC), Spain. Moreover, the high radiopurity of UAr leads to other possible applications, for instance, for those neutrinoless double-beta decay experiments using argon as shielding material or, more generally, for all those activities on argon-based detectors in high-energy physics or nuclear physics, which will be briefly discussed.
Aaron, E.; Agnes, P.; Ahmad, I.; Albergo, S.; Albuquerque, I. F.; Alexander, T.; Alton, A. K.; Amaudruz, P.; Atzori Corona, M.; Ave, M.; et al
(, The European Physical Journal C)
Abstract The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: $${}^{36}\hbox {Ar}$$ 36 Ar , $${}^{38}\textrm{Ar}$$ 38 Ar , and $${}^{40}\textrm{Ar}$$ 40 Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019.
DarkSide-20k_Collaboration; Agnes, P.; Ahmad, I.; Albergo, S.; Albuquerque, I_F_M; Alexander, T.; Alton, A_K; Amaudruz, P.; Corona, M_Atzori; Ave, M.; et al
(, The European Physical Journal C)
Abstract The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils produced in a target material from the WIMP elastic scattering. The experimental identification of the direction of the WIMP-induced nuclear recoils is a crucial asset in this field, as it enables unmistakable modulation signatures for dark matter. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity in argon dual-phase time projection chambers (TPC), that are widely considered for current and future direct dark matter searches. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud. Data were taken with nuclear recoils of known directions and kinetic energy of 72 keV, which is within the range of interest for WIMP-induced signals in argon. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratioRof the initial ionization cloud is$$R < 1.072$$ with 90 % confidence level.
Acerbi, F, Adhikari, P, Agnes, P, Ahmad, I, Albergo, S, Albuquerque, I_F M, Alexander, T, Alton, A K, Amaudruz, P, Angiolilli, M, Aprile, E, Ardito, R, Atzori_Corona, M, Auty, D J, Ave, M, Avetisov, I C, Azzolini, O, Back, H O, Balmforth, Z, Barrado_Olmedo, A, Barrillon, P, Batignani, G, Bhowmick, P, Blua, S, Bocci, V, Bonivento, W, Bottino, B, Boulay, M G, Buchowicz, A, Bussino, S, Busto, J, Cadeddu, M, Cadoni, M, Calabrese, R, Camillo, V, Caminata, A, Canci, N, Capra, A, Caravati, M, Cárdenas-Montes, M, Cargioli, N, Carlini, M, Castellani, A, Castello, P, Cavalcante, P, Cebrian, S, Cela_Ruiz, J M, Chashin, S, Chepurnov, A, Cifarelli, L, Cintas, D, Citterio, M, Cleveland, B, Coadou, Y, Cocco, V, Colaiuda, D, Conde_Vilda, E, Consiglio, L, Costa, B S, Czubak, M, D’Aniello, M, D’Auria, S, Da_Rocha_Rolo, M D, Darbo, G, Davini, S, De_Cecco, S, De_Guido, G, Dellacasa, G, Derbin, A V, Devoto, A, Di_Capua, F, Di_Ludovico, A, Di_Noto, L, Di_Stefano, P, Dias, L K, Díaz_Mairena, D, Ding, X, Dionisi, C, Dolganov, G, Dordei, F, Dronik, V, Elersich, A, Ellingwood, E, Erjavec, T, Fernandez_Diaz, M, Ficorella, A, Fiorillo, G, Franchini, P, Franco, D, Frandini_Gatti, H, Frolov, E, Gabriele, F, Gahan, D, Galbiati, C, Galiński, G, Gallina, G, Gallus, G, Garbini, M, Garcia_Abia, P, Gawdzik, A, Gendotti, A, Ghisi, A, Giovanetti, G K, Goicoechea_Casanueva, V, Gola, A, Grandi, L, Grauso, G, Grilli_di_Cortona, G, Grobov, A, Gromov, M, Guerzoni, M, Gulino, M, Guo, C, Hackett, B R, Hallin, A, Hamer, A, Haranczyk, M, Harrop, B, Hessel, T, Hill, S, Horikawa, S, Hu, J, Hubaut, F, Hucker, J, Hugues, T, Hungerford, E V, Ianni, A, Ippolito, V, Jamil, A, Jillings, C, Jois, S, Kachru, P, Keloth, R, Kemmerich, N, Kemp, A, Kendziora, C L, Kimura, M, Kondo, K, Korga, G, Kotsiopoulou, L, Koulosousas, S, Kubankin, A, Kunzé, P, Kuss, M, Kuźniak, M, Kuzwa, M, La_Commara, M, Lai, M, Le_Guirriec, E, Leason, E, Leoni, A, Lidey, L, Lissia, M, Luzzi, L, Lychagina, O, Macfadyen, O, Machulin, I N, Manecki, S, Manthos, I, Mapelli, L, Marasciulli, A, Mari, S M, Mariani, C, Maricic, J, Martinez, M, Martoff, C J, Matteucci, G, Mavrokoridis, K, McDonald, A B, Mclaughlin, J, Merzi, S, Messina, A, Milincic, R, Minutoli, S, Mitra, A, Moioli, S, Monroe, J, Moretti, E, Morrocchi, M, Mroz, T, Muratova, V N, Murphy, M, Murra, M, Muscas, C, Musico, P, Nania, R, Nessi, M, Nieradka, G, Nikolopoulos, K, Nikoloudaki, E, Nowak, J, Olchanski, K, Oleinik, A, Oleynikov, V, Organtini, P, Ortiz_de_Solórzano, A, Pallavicini, M, Pandola, L, Pantic, E, Paoloni, E, Papi, D, Pastuszak, G, Paternoster, G, Peck, A, Pegoraro, P A, Pelczar, K, Pellegrini, L A, Perez, R, Perotti, F, Pesudo, V, Piacentini, S, Pino, N, Plante, G, Pocar, A, Poehlmann, M, Pordes, S, Pralavorio, P, Price, D, Puglia, S, Queiroga_Bazetto, M, Ragusa, F, Ramachers, Y, Ramirez, A, Ravinthiran, S, Razeti, M, Renshaw, A L, Rescigno, M, Retiere, F, Rignanese, L P, Rivetti, A, Roberts, A, Roberts, C, Rogers, G, Romero, L, Rossi, M, Rubbia, A, Rudik, D, Sabia, M, Salomone, P, Samoylov, O, Sandford, E, Sanfilippo, S, Santone, D, Santorelli, R, Santos, E M, Savarese, C, Scapparone, E, Schillaci, G, Schuckman_II, F G, Scioli, G, Semenov, D A, Shalamova, V, Sheshukov, A, Simeone, M, Skensved, P, Skorokhvatov, M D, Smirnov, O, Smirnova, T, Smith, B, Sotnikov, A, Spadoni, F, Spangenberg, M, Stefanizzi, R, Steri, A, Stornelli, V, Stracka, S, Sulis, S, Sung, A, Sunny, C, Suvorov, Y, Szelc, A M, Taborda, O, Tartaglia, R, Taylor, A, Taylor, J, Tedesco, S, Testera, G, Thieme, K, Thompson, A, Tonazzo, A, Torres-Lara, S, Tricomi, A, Unzhakov, E V, Vallivilayil, T J, Van_Uffelen, M, Velazquez-Fernandez, L, Viant, T, Viel, S, Vishneva, A, Vogelaar, R B, Vossebeld, J, Vyas, B, Walczak, M B, Wang, Y, Wang, H, Westerdale, S, Williams, L, Wojaczyński, R, Wojcik, M, Wojcik, M M, Wright, T, Xie, Y, Yang, C, Yin, J, Zabihi, A, Zakhary, P, Zani, A, Zhang, Y, Zhu, T, Zichichi, A, Zuzel, G, and Zykova, M P. DarkSide-20k sensitivity to light dark matter particles. Retrieved from https://par.nsf.gov/biblio/10585317. Communications Physics 7.1 Web. doi:10.1038/s42005-024-01896-z.
Acerbi, F, Adhikari, P, Agnes, P, Ahmad, I, Albergo, S, Albuquerque, I_F M, Alexander, T, Alton, A K, Amaudruz, P, Angiolilli, M, Aprile, E, Ardito, R, Atzori_Corona, M, Auty, D J, Ave, M, Avetisov, I C, Azzolini, O, Back, H O, Balmforth, Z, Barrado_Olmedo, A, Barrillon, P, Batignani, G, Bhowmick, P, Blua, S, Bocci, V, Bonivento, W, Bottino, B, Boulay, M G, Buchowicz, A, Bussino, S, Busto, J, Cadeddu, M, Cadoni, M, Calabrese, R, Camillo, V, Caminata, A, Canci, N, Capra, A, Caravati, M, Cárdenas-Montes, M, Cargioli, N, Carlini, M, Castellani, A, Castello, P, Cavalcante, P, Cebrian, S, Cela_Ruiz, J M, Chashin, S, Chepurnov, A, Cifarelli, L, Cintas, D, Citterio, M, Cleveland, B, Coadou, Y, Cocco, V, Colaiuda, D, Conde_Vilda, E, Consiglio, L, Costa, B S, Czubak, M, D’Aniello, M, D’Auria, S, Da_Rocha_Rolo, M D, Darbo, G, Davini, S, De_Cecco, S, De_Guido, G, Dellacasa, G, Derbin, A V, Devoto, A, Di_Capua, F, Di_Ludovico, A, Di_Noto, L, Di_Stefano, P, Dias, L K, Díaz_Mairena, D, Ding, X, Dionisi, C, Dolganov, G, Dordei, F, Dronik, V, Elersich, A, Ellingwood, E, Erjavec, T, Fernandez_Diaz, M, Ficorella, A, Fiorillo, G, Franchini, P, Franco, D, Frandini_Gatti, H, Frolov, E, Gabriele, F, Gahan, D, Galbiati, C, Galiński, G, Gallina, G, Gallus, G, Garbini, M, Garcia_Abia, P, Gawdzik, A, Gendotti, A, Ghisi, A, Giovanetti, G K, Goicoechea_Casanueva, V, Gola, A, Grandi, L, Grauso, G, Grilli_di_Cortona, G, Grobov, A, Gromov, M, Guerzoni, M, Gulino, M, Guo, C, Hackett, B R, Hallin, A, Hamer, A, Haranczyk, M, Harrop, B, Hessel, T, Hill, S, Horikawa, S, Hu, J, Hubaut, F, Hucker, J, Hugues, T, Hungerford, E V, Ianni, A, Ippolito, V, Jamil, A, Jillings, C, Jois, S, Kachru, P, Keloth, R, Kemmerich, N, Kemp, A, Kendziora, C L, Kimura, M, Kondo, K, Korga, G, Kotsiopoulou, L, Koulosousas, S, Kubankin, A, Kunzé, P, Kuss, M, Kuźniak, M, Kuzwa, M, La_Commara, M, Lai, M, Le_Guirriec, E, Leason, E, Leoni, A, Lidey, L, Lissia, M, Luzzi, L, Lychagina, O, Macfadyen, O, Machulin, I N, Manecki, S, Manthos, I, Mapelli, L, Marasciulli, A, Mari, S M, Mariani, C, Maricic, J, Martinez, M, Martoff, C J, Matteucci, G, Mavrokoridis, K, McDonald, A B, Mclaughlin, J, Merzi, S, Messina, A, Milincic, R, Minutoli, S, Mitra, A, Moioli, S, Monroe, J, Moretti, E, Morrocchi, M, Mroz, T, Muratova, V N, Murphy, M, Murra, M, Muscas, C, Musico, P, Nania, R, Nessi, M, Nieradka, G, Nikolopoulos, K, Nikoloudaki, E, Nowak, J, Olchanski, K, Oleinik, A, Oleynikov, V, Organtini, P, Ortiz_de_Solórzano, A, Pallavicini, M, Pandola, L, Pantic, E, Paoloni, E, Papi, D, Pastuszak, G, Paternoster, G, Peck, A, Pegoraro, P A, Pelczar, K, Pellegrini, L A, Perez, R, Perotti, F, Pesudo, V, Piacentini, S, Pino, N, Plante, G, Pocar, A, Poehlmann, M, Pordes, S, Pralavorio, P, Price, D, Puglia, S, Queiroga_Bazetto, M, Ragusa, F, Ramachers, Y, Ramirez, A, Ravinthiran, S, Razeti, M, Renshaw, A L, Rescigno, M, Retiere, F, Rignanese, L P, Rivetti, A, Roberts, A, Roberts, C, Rogers, G, Romero, L, Rossi, M, Rubbia, A, Rudik, D, Sabia, M, Salomone, P, Samoylov, O, Sandford, E, Sanfilippo, S, Santone, D, Santorelli, R, Santos, E M, Savarese, C, Scapparone, E, Schillaci, G, Schuckman_II, F G, Scioli, G, Semenov, D A, Shalamova, V, Sheshukov, A, Simeone, M, Skensved, P, Skorokhvatov, M D, Smirnov, O, Smirnova, T, Smith, B, Sotnikov, A, Spadoni, F, Spangenberg, M, Stefanizzi, R, Steri, A, Stornelli, V, Stracka, S, Sulis, S, Sung, A, Sunny, C, Suvorov, Y, Szelc, A M, Taborda, O, Tartaglia, R, Taylor, A, Taylor, J, Tedesco, S, Testera, G, Thieme, K, Thompson, A, Tonazzo, A, Torres-Lara, S, Tricomi, A, Unzhakov, E V, Vallivilayil, T J, Van_Uffelen, M, Velazquez-Fernandez, L, Viant, T, Viel, S, Vishneva, A, Vogelaar, R B, Vossebeld, J, Vyas, B, Walczak, M B, Wang, Y, Wang, H, Westerdale, S, Williams, L, Wojaczyński, R, Wojcik, M, Wojcik, M M, Wright, T, Xie, Y, Yang, C, Yin, J, Zabihi, A, Zakhary, P, Zani, A, Zhang, Y, Zhu, T, Zichichi, A, Zuzel, G, & Zykova, M P. DarkSide-20k sensitivity to light dark matter particles. Communications Physics, 7 (1). Retrieved from https://par.nsf.gov/biblio/10585317. https://doi.org/10.1038/s42005-024-01896-z
Acerbi, F, Adhikari, P, Agnes, P, Ahmad, I, Albergo, S, Albuquerque, I_F M, Alexander, T, Alton, A K, Amaudruz, P, Angiolilli, M, Aprile, E, Ardito, R, Atzori_Corona, M, Auty, D J, Ave, M, Avetisov, I C, Azzolini, O, Back, H O, Balmforth, Z, Barrado_Olmedo, A, Barrillon, P, Batignani, G, Bhowmick, P, Blua, S, Bocci, V, Bonivento, W, Bottino, B, Boulay, M G, Buchowicz, A, Bussino, S, Busto, J, Cadeddu, M, Cadoni, M, Calabrese, R, Camillo, V, Caminata, A, Canci, N, Capra, A, Caravati, M, Cárdenas-Montes, M, Cargioli, N, Carlini, M, Castellani, A, Castello, P, Cavalcante, P, Cebrian, S, Cela_Ruiz, J M, Chashin, S, Chepurnov, A, Cifarelli, L, Cintas, D, Citterio, M, Cleveland, B, Coadou, Y, Cocco, V, Colaiuda, D, Conde_Vilda, E, Consiglio, L, Costa, B S, Czubak, M, D’Aniello, M, D’Auria, S, Da_Rocha_Rolo, M D, Darbo, G, Davini, S, De_Cecco, S, De_Guido, G, Dellacasa, G, Derbin, A V, Devoto, A, Di_Capua, F, Di_Ludovico, A, Di_Noto, L, Di_Stefano, P, Dias, L K, Díaz_Mairena, D, Ding, X, Dionisi, C, Dolganov, G, Dordei, F, Dronik, V, Elersich, A, Ellingwood, E, Erjavec, T, Fernandez_Diaz, M, Ficorella, A, Fiorillo, G, Franchini, P, Franco, D, Frandini_Gatti, H, Frolov, E, Gabriele, F, Gahan, D, Galbiati, C, Galiński, G, Gallina, G, Gallus, G, Garbini, M, Garcia_Abia, P, Gawdzik, A, Gendotti, A, Ghisi, A, Giovanetti, G K, Goicoechea_Casanueva, V, Gola, A, Grandi, L, Grauso, G, Grilli_di_Cortona, G, Grobov, A, Gromov, M, Guerzoni, M, Gulino, M, Guo, C, Hackett, B R, Hallin, A, Hamer, A, Haranczyk, M, Harrop, B, Hessel, T, Hill, S, Horikawa, S, Hu, J, Hubaut, F, Hucker, J, Hugues, T, Hungerford, E V, Ianni, A, Ippolito, V, Jamil, A, Jillings, C, Jois, S, Kachru, P, Keloth, R, Kemmerich, N, Kemp, A, Kendziora, C L, Kimura, M, Kondo, K, Korga, G, Kotsiopoulou, L, Koulosousas, S, Kubankin, A, Kunzé, P, Kuss, M, Kuźniak, M, Kuzwa, M, La_Commara, M, Lai, M, Le_Guirriec, E, Leason, E, Leoni, A, Lidey, L, Lissia, M, Luzzi, L, Lychagina, O, Macfadyen, O, Machulin, I N, Manecki, S, Manthos, I, Mapelli, L, Marasciulli, A, Mari, S M, Mariani, C, Maricic, J, Martinez, M, Martoff, C J, Matteucci, G, Mavrokoridis, K, McDonald, A B, Mclaughlin, J, Merzi, S, Messina, A, Milincic, R, Minutoli, S, Mitra, A, Moioli, S, Monroe, J, Moretti, E, Morrocchi, M, Mroz, T, Muratova, V N, Murphy, M, Murra, M, Muscas, C, Musico, P, Nania, R, Nessi, M, Nieradka, G, Nikolopoulos, K, Nikoloudaki, E, Nowak, J, Olchanski, K, Oleinik, A, Oleynikov, V, Organtini, P, Ortiz_de_Solórzano, A, Pallavicini, M, Pandola, L, Pantic, E, Paoloni, E, Papi, D, Pastuszak, G, Paternoster, G, Peck, A, Pegoraro, P A, Pelczar, K, Pellegrini, L A, Perez, R, Perotti, F, Pesudo, V, Piacentini, S, Pino, N, Plante, G, Pocar, A, Poehlmann, M, Pordes, S, Pralavorio, P, Price, D, Puglia, S, Queiroga_Bazetto, M, Ragusa, F, Ramachers, Y, Ramirez, A, Ravinthiran, S, Razeti, M, Renshaw, A L, Rescigno, M, Retiere, F, Rignanese, L P, Rivetti, A, Roberts, A, Roberts, C, Rogers, G, Romero, L, Rossi, M, Rubbia, A, Rudik, D, Sabia, M, Salomone, P, Samoylov, O, Sandford, E, Sanfilippo, S, Santone, D, Santorelli, R, Santos, E M, Savarese, C, Scapparone, E, Schillaci, G, Schuckman_II, F G, Scioli, G, Semenov, D A, Shalamova, V, Sheshukov, A, Simeone, M, Skensved, P, Skorokhvatov, M D, Smirnov, O, Smirnova, T, Smith, B, Sotnikov, A, Spadoni, F, Spangenberg, M, Stefanizzi, R, Steri, A, Stornelli, V, Stracka, S, Sulis, S, Sung, A, Sunny, C, Suvorov, Y, Szelc, A M, Taborda, O, Tartaglia, R, Taylor, A, Taylor, J, Tedesco, S, Testera, G, Thieme, K, Thompson, A, Tonazzo, A, Torres-Lara, S, Tricomi, A, Unzhakov, E V, Vallivilayil, T J, Van_Uffelen, M, Velazquez-Fernandez, L, Viant, T, Viel, S, Vishneva, A, Vogelaar, R B, Vossebeld, J, Vyas, B, Walczak, M B, Wang, Y, Wang, H, Westerdale, S, Williams, L, Wojaczyński, R, Wojcik, M, Wojcik, M M, Wright, T, Xie, Y, Yang, C, Yin, J, Zabihi, A, Zakhary, P, Zani, A, Zhang, Y, Zhu, T, Zichichi, A, Zuzel, G, and Zykova, M P.
"DarkSide-20k sensitivity to light dark matter particles". Communications Physics 7 (1). Country unknown/Code not available: Nature. https://doi.org/10.1038/s42005-024-01896-z.https://par.nsf.gov/biblio/10585317.
@article{osti_10585317,
place = {Country unknown/Code not available},
title = {DarkSide-20k sensitivity to light dark matter particles},
url = {https://par.nsf.gov/biblio/10585317},
DOI = {10.1038/s42005-024-01896-z},
abstractNote = {The dual-phase liquid argon time projection chamber is presently one of the leading technologies to search for dark matter particles with masses below 10 GeV c−2. This was demonstrated by the DarkSide-50 experiment with approximately 50 kg of low-radioactivity liquid argon as target material. The next generation experiment DarkSide-20k, currently under construction, will use 1,000 times more argon and is expected to start operation in 2027. Based on the DarkSide-50 experience, here we assess the DarkSide-20k sensitivity to models predicting light dark matter particles, including Weakly Interacting Massive Particles (WIMPs) and sub-GeV c−2 particles interacting with electrons in argon atoms. With one year of data, a sensitivity improvement to dark matter interaction cross-sections by at least one order of magnitude with respect to DarkSide-50 is expected for all these models. A sensitivity to WIMP–nucleon interaction cross-sections below 1 × 10−42 cm2 is achievable for WIMP masses above 800 MeV c−2. With 10 years exposure, the neutrino fog can be reached for WIMP masses around 5 GeV c−2.},
journal = {Communications Physics},
volume = {7},
number = {1},
publisher = {Nature},
author = {Acerbi, F and Adhikari, P and Agnes, P and Ahmad, I and Albergo, S and Albuquerque, I_F M and Alexander, T and Alton, A K and Amaudruz, P and Angiolilli, M and Aprile, E and Ardito, R and Atzori_Corona, M and Auty, D J and Ave, M and Avetisov, I C and Azzolini, O and Back, H O and Balmforth, Z and Barrado_Olmedo, A and Barrillon, P and Batignani, G and Bhowmick, P and Blua, S and Bocci, V and Bonivento, W and Bottino, B and Boulay, M G and Buchowicz, A and Bussino, S and Busto, J and Cadeddu, M and Cadoni, M and Calabrese, R and Camillo, V and Caminata, A and Canci, N and Capra, A and Caravati, M and Cárdenas-Montes, M and Cargioli, N and Carlini, M and Castellani, A and Castello, P and Cavalcante, P and Cebrian, S and Cela_Ruiz, J M and Chashin, S and Chepurnov, A and Cifarelli, L and Cintas, D and Citterio, M and Cleveland, B and Coadou, Y and Cocco, V and Colaiuda, D and Conde_Vilda, E and Consiglio, L and Costa, B S and Czubak, M and D’Aniello, M and D’Auria, S and Da_Rocha_Rolo, M D and Darbo, G and Davini, S and De_Cecco, S and De_Guido, G and Dellacasa, G and Derbin, A V and Devoto, A and Di_Capua, F and Di_Ludovico, A and Di_Noto, L and Di_Stefano, P and Dias, L K and Díaz_Mairena, D and Ding, X and Dionisi, C and Dolganov, G and Dordei, F and Dronik, V and Elersich, A and Ellingwood, E and Erjavec, T and Fernandez_Diaz, M and Ficorella, A and Fiorillo, G and Franchini, P and Franco, D and Frandini_Gatti, H and Frolov, E and Gabriele, F and Gahan, D and Galbiati, C and Galiński, G and Gallina, G and Gallus, G and Garbini, M and Garcia_Abia, P and Gawdzik, A and Gendotti, A and Ghisi, A and Giovanetti, G K and Goicoechea_Casanueva, V and Gola, A and Grandi, L and Grauso, G and Grilli_di_Cortona, G and Grobov, A and Gromov, M and Guerzoni, M and Gulino, M and Guo, C and Hackett, B R and Hallin, A and Hamer, A and Haranczyk, M and Harrop, B and Hessel, T and Hill, S and Horikawa, S and Hu, J and Hubaut, F and Hucker, J and Hugues, T and Hungerford, E V and Ianni, A and Ippolito, V and Jamil, A and Jillings, C and Jois, S and Kachru, P and Keloth, R and Kemmerich, N and Kemp, A and Kendziora, C L and Kimura, M and Kondo, K and Korga, G and Kotsiopoulou, L and Koulosousas, S and Kubankin, A and Kunzé, P and Kuss, M and Kuźniak, M and Kuzwa, M and La_Commara, M and Lai, M and Le_Guirriec, E and Leason, E and Leoni, A and Lidey, L and Lissia, M and Luzzi, L and Lychagina, O and Macfadyen, O and Machulin, I N and Manecki, S and Manthos, I and Mapelli, L and Marasciulli, A and Mari, S M and Mariani, C and Maricic, J and Martinez, M and Martoff, C J and Matteucci, G and Mavrokoridis, K and McDonald, A B and Mclaughlin, J and Merzi, S and Messina, A and Milincic, R and Minutoli, S and Mitra, A and Moioli, S and Monroe, J and Moretti, E and Morrocchi, M and Mroz, T and Muratova, V N and Murphy, M and Murra, M and Muscas, C and Musico, P and Nania, R and Nessi, M and Nieradka, G and Nikolopoulos, K and Nikoloudaki, E and Nowak, J and Olchanski, K and Oleinik, A and Oleynikov, V and Organtini, P and Ortiz_de_Solórzano, A and Pallavicini, M and Pandola, L and Pantic, E and Paoloni, E and Papi, D and Pastuszak, G and Paternoster, G and Peck, A and Pegoraro, P A and Pelczar, K and Pellegrini, L A and Perez, R and Perotti, F and Pesudo, V and Piacentini, S and Pino, N and Plante, G and Pocar, A and Poehlmann, M and Pordes, S and Pralavorio, P and Price, D and Puglia, S and Queiroga_Bazetto, M and Ragusa, F and Ramachers, Y and Ramirez, A and Ravinthiran, S and Razeti, M and Renshaw, A L and Rescigno, M and Retiere, F and Rignanese, L P and Rivetti, A and Roberts, A and Roberts, C and Rogers, G and Romero, L and Rossi, M and Rubbia, A and Rudik, D and Sabia, M and Salomone, P and Samoylov, O and Sandford, E and Sanfilippo, S and Santone, D and Santorelli, R and Santos, E M and Savarese, C and Scapparone, E and Schillaci, G and Schuckman_II, F G and Scioli, G and Semenov, D A and Shalamova, V and Sheshukov, A and Simeone, M and Skensved, P and Skorokhvatov, M D and Smirnov, O and Smirnova, T and Smith, B and Sotnikov, A and Spadoni, F and Spangenberg, M and Stefanizzi, R and Steri, A and Stornelli, V and Stracka, S and Sulis, S and Sung, A and Sunny, C and Suvorov, Y and Szelc, A M and Taborda, O and Tartaglia, R and Taylor, A and Taylor, J and Tedesco, S and Testera, G and Thieme, K and Thompson, A and Tonazzo, A and Torres-Lara, S and Tricomi, A and Unzhakov, E V and Vallivilayil, T J and Van_Uffelen, M and Velazquez-Fernandez, L and Viant, T and Viel, S and Vishneva, A and Vogelaar, R B and Vossebeld, J and Vyas, B and Walczak, M B and Wang, Y and Wang, H and Westerdale, S and Williams, L and Wojaczyński, R and Wojcik, M and Wojcik, M M and Wright, T and Xie, Y and Yang, C and Yin, J and Zabihi, A and Zakhary, P and Zani, A and Zhang, Y and Zhu, T and Zichichi, A and Zuzel, G and Zykova, M P},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.