skip to main content

Title: An improved method for atmospheric <sup>14</sup>CO measurements
Abstract. Important uncertainties remain in our understanding of the spatial andtemporal variability of atmospheric hydroxyl radical concentration ([OH]).Carbon-14-containing carbon monoxide (14CO) is a useful tracer that canhelp in the characterization of [OH] variability. Prior measurements ofatmospheric 14CO concentration ([14CO] are limited in both theirspatial and temporal extent, partly due to the very large air sample volumes that have been required for measurements (500–1000 L at standardtemperature and pressure, L STP) and the difficulty and expense associatedwith the collection, shipment, and processing of such samples. Here wepresent a new method that reduces the air sample volume requirement to≈90 L STP while allowing for [14CO] measurement uncertainties that are on par with or better than prior work (≈3 % or better, 1σ). The method also for the first time includes accurate characterization of the overall procedural [14CO] blank associated with individual samples, which is a key improvement over prior atmospheric 14CO work. The method was used to make measurements of [14CO] at the NOAA Mauna Loa Observatory, Hawaii, USA, between November 2017 and November 2018. The measurements show the expected [14CO] seasonal cycle (lowest in summer)and are in good agreement with prior [14CO] results from anotherlow-latitude site in the Northern Hemisphere. The lowest overall [14CO]uncertainties (2.1 %, 1σ) more » are achieved for samples that aredirectly accompanied by procedural blanks and whose mass is increased to≈50 µgC (micrograms of carbon) prior to the 14Cmeasurement via dilution with a high-CO 14C-depleted gas. « less
; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Atmospheric Measurement Techniques
Page Range or eLocation-ID:
2055 to 2063
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016More>>
  2. Abstract. Reactions of the hydroxyl (OH) and peroxy (HO2 and RO2) radicals playa central role in the chemistry of the atmosphere. In addition to controlling the lifetimes ofmany trace gases important to issues of global climate change, OH radical reactionsinitiate the oxidation of volatile organic compounds (VOCs) which can lead to the production ofozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicalsin forest environments characterized by high mixing ratios of isoprene and low mixing ratios ofnitrogen oxides (NOx) (typically less than 1–2 ppb) have shown seriousdiscrepancies with modeled concentrations. These results bring into question our understanding ofthe atmosphericmore »chemistry of isoprene and other biogenic VOCs under low NOxconditions. During the summer of 2015, OH and HO2 radical concentrations, as well as totalOH reactivity, were measured using laser-induced fluorescence–fluorescence assay by gasexpansion (LIF-FAGE) techniques as part of the Indiana Radical Reactivity and Ozone productioN InterComparison (IRRONIC). This campaign took place in a forested area near Indiana University's Bloomington campus which is characterized by high mixing ratios of isoprene (average daily maximum ofapproximately 4 ppb at 28 ∘C) and low mixing ratios of NO (diurnal averageof approximately 170 ppt). Supporting measurements of photolysis rates, VOCs,NOx, and other species were used to constrain a zero-dimensional box model basedon the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM 3.2),including versions of the Leuven isoprene mechanism (LIM1) for HOx regeneration(RACM2-LIM1 and MCM 3.3.1). Using an OH chemical scavenger technique, the study revealed thepresence of an interference with the LIF-FAGE measurements of OH that increased with bothambient concentrations of ozone and temperature with an average daytime maximum equivalentOH concentration of approximately 5×106 cm−3. Subtraction of theinterference resulted in measured OH concentrations of approximately4×106 cm−3 (average daytime maximum) that were in better agreement with modelpredictions although the models underestimated the measurements in the evening. The addition ofversions of the LIM1 mechanism increased the base RACM2 and MCM 3.2 modeled OH concentrationsby approximately 20 % and 13 %, respectively, with the RACM2-LIM1 mechanism providing thebest agreement with the measured concentrations, predicting maximum daily OH concentrationsto within 30 % of the measured concentrations. Measurements of HO2 concentrationsduring the campaign (approximately a 1×109 cm−3 average daytime maximum)included a fraction of isoprene-based peroxy radicals(HO2*=HO2+αRO2) and were found to agree with modelpredictions to within 10 %–30 %. On average, the measured reactivity was consistent with thatcalculated from measured OH sinks to within 20 %, with modeled oxidation productsaccounting for the missing reactivity, however significant missing reactivity (approximately40 % of the total measured reactivity) was observed on some days.« less
  3. Abstract. While photooxidants are important in atmospheric condensed phases, there arevery few measurements in particulate matter (PM). Here we measure lightabsorption and the concentrations of three photooxidants – hydroxyl radical(⚫OH), singlet molecular oxygen (1O2*),and oxidizing triplet excited states of organic matter (3C*) –in illuminated aqueous extracts of wintertime particles from Davis,California. 1O2* and 3C*, which are formedfrom photoexcitation of brown carbon (BrC), have not been previously measuredin PM. In the extracts, mass absorption coefficients for dissolved organiccompounds (MACDOC) at 300 nm range between 13 000 and30 000 cm2 (g C)−1 are approximately twice ashigh as previous values in Davis fogs. The average (±1σ)⚫OH steady-state concentration inmore »particle extracts is4.4(±2.3)×10-16 M, which is very similar to previous valuesin fog, cloud, and rain: although our particle extracts are moreconcentrated, the resulting enhancement in the rate of ⚫OHphotoproduction is essentially canceled out by a corresponding enhancement inconcentrations of natural sinks for ⚫OH. In contrast,concentrations of the two oxidants formed primarily from brown carbon (i.e.,1O2* and 3C*) are both enhanced in theparticle extracts compared to Davis fogs, a result of higher concentrationsof dissolved organic carbon and faster rates of light absorption in theextracts. The average 1O2* concentration in the PM extractsis 1.6(±0.5)×10-12 M, 7 times higher than past fogmeasurements, while the average concentration of oxidizing triplets is 1.0(±0.4)×10-13 M, nearly double the average Davis fog value.Additionally, the rates of 1O2* and 3C*photoproduction are both well correlated with the rate of sunlightabsorption. Since we cannot experimentally measure photooxidants under ambient particlewater conditions, we measured the effect of PM dilution on oxidantconcentrations and then extrapolated to ambient particle conditions. As theparticle mass concentration in the extracts increases, measuredconcentrations of ⚫OH remain relatively unchanged,1O2* increases linearly, and 3C* concentrations increase lessthan linearly, likely due to quenching by dissolved organics. Based on ourmeasurements, and accounting for additional sources and sinks that should beimportant under PM conditions, we estimate that [⚫OH] inparticles is somewhat lower than in dilute cloud/fog drops, while [3C*]is 30 to 2000 times higher in PM than in drops, and [1O2*] isenhanced by a factor of roughly 2400 in PM compared to drops. Because ofthese enhancements in 1O2* and 3C* concentrations,the lifetimes of some highly soluble organics appear to be much shorter inparticle liquid water than under foggy/cloudy conditions. Based onextrapolating our measured rates of formation in PM extracts, BrC-derivedsinglet molecular oxygen and triplet excited states are overall the dominantsinks for organic compounds in particle liquid water, with an aggregate rateof reaction for each oxidant that is approximately 200–300 times higherthan the aggregate rate of reactions for organics with ⚫OH. Forindividual, highly soluble reactive organic compounds it appears that1O2* is often the major sink in particle water, which is a newfinding. Triplet excited states are likely also important in the fate ofindividual particulate organics, but assessing this requires additionalmeasurements of triplet interactions with dissolved organic carbon innatural samples.« less
  4. Abstract. Reactive mercury (RM), the sum of both gaseous oxidized Hg and particulatebound Hg, is an important component of the global atmospheric mercury cycle,but measurement currently depends on uncalibrated operationally definedmethods with large uncertainty and demonstrated interferences and artifacts.Cation exchange membranes (CEMs) provide a promising alternative methodologyfor quantification of RM, but method validation and improvements are ongoing.For the CEM material to be reliable, uptake of gaseous elemental mercury(GEM) must be negligible under all conditions and RM compounds must becaptured and retained with high efficiency. In this study, the performance ofCEM material under exposure to high concentrations of GEM (1.43×106 tomore »1.85×106 pg m−3) and reactive gaseous mercurybromide (HgBr2 ∼5000 pg m−3) was explored using acustom-built mercury vapor permeation system. Quantification of totalpermeated Hg was measured via pyrolysis at 600 ∘C and detectionusing a Tekran® 2537A. Permeation tests wereconducted over 24 to 72 h in clean laboratory air, with absolute humiditylevels ranging from 0.1 to 10 g m−3 water vapor. GEM uptake by the CEMmaterial averaged no more than 0.004 % of total exposure for all testconditions, which equates to a non-detectable GEM artifact for typicalambient air sample concentrations. Recovery of HgBr2 on CEM filters wason average 127 % compared to calculated total permeated HgBr2 based onthe downstream Tekran® 2537A data. The lowHgBr2 breakthrough on the downstream CEMs (< 1 %) suggests thatthe elevated recoveries are more likely related to suboptimal pyrolyzerconditions or inefficient collection on the Tekran® 2537A gold traps.« less
  5. Abstract. The atmospheric multiphase reaction of dinitrogenpentoxide (N2O5) with chloride-containing aerosol particlesproduces nitryl chloride (ClNO2), which has been observed across theglobe. The photolysis of ClNO2 produces chlorine radicals and nitrogendioxide (NO2), which alter pollutant fates and air quality. However,the effects of local meteorology on near-surface ClNO2 production arenot yet well understood, as most observational and modeling studies focus onperiods of clear conditions. During a field campaign in Kalamazoo, Michigan,from January–February 2018, N2O5 and ClNO2 were measuredusing chemical ionization mass spectrometry, with simultaneous measurementsof atmospheric particulate matter and meteorological parameters. We examinethe impacts of atmospheric turbulence, precipitation (snow, rain) and fog,and groundmore »cover (snow-covered and bare ground) on the abundances ofClNO2 and N2O5. N2O5 mole ratios were lowest duringperiods of lower turbulence and were not statistically significantlydifferent between snow-covered and bare ground. In contrast, ClNO2 moleratios were highest, on average, over snow-covered ground, due to salinesnowpack ClNO2 production. Both N2O5 and ClNO2 moleratios were lowest, on average, during rainfall and fog because ofscavenging, with N2O5 scavenging by fog droplets likelycontributing to observed increased particulate nitrate concentrations. Theseobservations, specifically those during active precipitation and withsnow-covered ground, highlight important processes, including N2O5and ClNO2 wet scavenging, fog nitrate production, and snowpackClNO2 production, that govern the variability in observed atmosphericchlorine and nitrogen chemistry and are missed when considering only clearconditions.« less