skip to main content


Title: Urban inland wintertime N<sub>2</sub>O<sub>5</sub> and ClNO<sub>2</sub> influenced by snow-covered ground, air turbulence, and precipitation
Abstract. The atmospheric multiphase reaction of dinitrogenpentoxide (N2O5) with chloride-containing aerosol particlesproduces nitryl chloride (ClNO2), which has been observed across theglobe. The photolysis of ClNO2 produces chlorine radicals and nitrogendioxide (NO2), which alter pollutant fates and air quality. However,the effects of local meteorology on near-surface ClNO2 production arenot yet well understood, as most observational and modeling studies focus onperiods of clear conditions. During a field campaign in Kalamazoo, Michigan,from January–February 2018, N2O5 and ClNO2 were measuredusing chemical ionization mass spectrometry, with simultaneous measurementsof atmospheric particulate matter and meteorological parameters. We examinethe impacts of atmospheric turbulence, precipitation (snow, rain) and fog,and ground cover (snow-covered and bare ground) on the abundances ofClNO2 and N2O5. N2O5 mole ratios were lowest duringperiods of lower turbulence and were not statistically significantlydifferent between snow-covered and bare ground. In contrast, ClNO2 moleratios were highest, on average, over snow-covered ground, due to salinesnowpack ClNO2 production. Both N2O5 and ClNO2 moleratios were lowest, on average, during rainfall and fog because ofscavenging, with N2O5 scavenging by fog droplets likelycontributing to observed increased particulate nitrate concentrations. Theseobservations, specifically those during active precipitation and withsnow-covered ground, highlight important processes, including N2O5and ClNO2 wet scavenging, fog nitrate production, and snowpackClNO2 production, that govern the variability in observed atmosphericchlorine and nitrogen chemistry and are missed when considering only clearconditions.  more » « less
Award ID(s):
1738588
NSF-PAR ID:
10323458
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
4
ISSN:
1680-7324
Page Range / eLocation ID:
2553 to 2568
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Reactions of the hydroxyl (OH) and peroxy (HO2 and RO2) radicals playa central role in the chemistry of the atmosphere. In addition to controlling the lifetimes ofmany trace gases important to issues of global climate change, OH radical reactionsinitiate the oxidation of volatile organic compounds (VOCs) which can lead to the production ofozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicalsin forest environments characterized by high mixing ratios of isoprene and low mixing ratios ofnitrogen oxides (NOx) (typically less than 1–2 ppb) have shown seriousdiscrepancies with modeled concentrations. These results bring into question our understanding ofthe atmospheric chemistry of isoprene and other biogenic VOCs under low NOxconditions. During the summer of 2015, OH and HO2 radical concentrations, as well as totalOH reactivity, were measured using laser-induced fluorescence–fluorescence assay by gasexpansion (LIF-FAGE) techniques as part of the Indiana Radical Reactivity and Ozone productioN InterComparison (IRRONIC). This campaign took place in a forested area near Indiana University's Bloomington campus which is characterized by high mixing ratios of isoprene (average daily maximum ofapproximately 4 ppb at 28 ∘C) and low mixing ratios of NO (diurnal averageof approximately 170 ppt). Supporting measurements of photolysis rates, VOCs,NOx, and other species were used to constrain a zero-dimensional box model basedon the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM 3.2),including versions of the Leuven isoprene mechanism (LIM1) for HOx regeneration(RACM2-LIM1 and MCM 3.3.1). Using an OH chemical scavenger technique, the study revealed thepresence of an interference with the LIF-FAGE measurements of OH that increased with bothambient concentrations of ozone and temperature with an average daytime maximum equivalentOH concentration of approximately 5×106 cm−3. Subtraction of theinterference resulted in measured OH concentrations of approximately4×106 cm−3 (average daytime maximum) that were in better agreement with modelpredictions although the models underestimated the measurements in the evening. The addition ofversions of the LIM1 mechanism increased the base RACM2 and MCM 3.2 modeled OH concentrationsby approximately 20 % and 13 %, respectively, with the RACM2-LIM1 mechanism providing thebest agreement with the measured concentrations, predicting maximum daily OH concentrationsto within 30 % of the measured concentrations. Measurements of HO2 concentrationsduring the campaign (approximately a 1×109 cm−3 average daytime maximum)included a fraction of isoprene-based peroxy radicals(HO2*=HO2+αRO2) and were found to agree with modelpredictions to within 10 %–30 %. On average, the measured reactivity was consistent with thatcalculated from measured OH sinks to within 20 %, with modeled oxidation productsaccounting for the missing reactivity, however significant missing reactivity (approximately40 % of the total measured reactivity) was observed on some days. 
    more » « less
  2. null (Ed.)
    Abstract. The western Arctic Ocean, including its shelves and coastal habitats, has become a focus in ocean acidification research over the past decade as thecolder waters of the region and the reduction of sea ice appear to promote the uptake of excess atmospheric CO2. Due to seasonal sea icecoverage, high-frequency monitoring of pH or other carbonate chemistry parameters is typically limited to infrequent ship-based transects duringice-free summers. This approach has failed to capture year-round nearshore carbonate chemistry dynamics which is modulated by biological metabolismin response to abundant allochthonous organic matter to the narrow shelf of the Beaufort Sea and adjacent regions. The coastline of the Beaufort Seacomprises a series of lagoons that account for > 50 % of the land–sea interface. The lagoon ecosystems are novel features that cycle between“open” and “closed” phases (i.e., ice-free and ice-covered, respectively). In this study, we collected high-frequency pH, salinity,temperature, and photosynthetically active radiation (PAR) measurements in association with the Beaufort Lagoon Ecosystems – Long Term Ecological Research program – for an entire calendar yearin Kaktovik Lagoon, Alaska, USA, capturing two open-water phases and one closed phase. Hourly pH variability during the open-water phases are someof the fastest rates reported, exceeding 0.4 units. Baseline pH varied substantially between the open phase in 2018 and open phase in 2019 from ∼ 7.85to 8.05, respectively, despite similar hourly rates of change. Salinity–pH relationships were mixed during all three phases, displaying nocorrelation in the 2018 open phase, a negative correlation in the 2018/19 closed phase, and a positive correlation during the 2019 open phase. The high frequency of pH variabilitycould partially be explained by photosynthesis–respiration cycles as correlation coefficients between daily average pH and PAR were 0.46 and 0.64for 2018 and 2019 open phases, respectively. The estimated annual daily average CO2 efflux (from sea to atmosphere) was5.9 ± 19.3 mmolm-2d-1, which is converse to the negative influx of CO2 estimated for the coastal Beaufort Seadespite exhibiting extreme variability. Considering the geomorphic differences such as depth and enclosure in Beaufort Sea lagoons, furtherinvestigation is needed to assess whether there are periods of the open phase in which lagoons are sources of carbon to the atmosphere, potentiallyoffsetting the predicted sink capacity of the greater Beaufort Sea. 
    more » « less
  3. Abstract. We use the GEOS-Chem chemical transport model to examine theinfluence of bromine release from blowing-snow sea salt aerosol (SSA) onspringtime bromine activation and O3 depletion events (ODEs) in theArctic lower troposphere. We evaluate our simulation against observations oftropospheric BrO vertical column densities (VCDtropo) from the GOME-2 (second Global Ozone Monitoring Experiment)and Ozone Monitoring Instrument (OMI) spaceborne instruments for 3 years (2007–2009), as well asagainst surface observations of O3. We conduct a simulation withblowing-snow SSA emissions from first-year sea ice (FYI; with a surface snowsalinity of 0.1 psu) and multi-year sea ice (MYI; with a surface snowsalinity of 0.05 psu), assuming a factor of 5 bromide enrichment of surfacesnow relative to seawater. This simulation captures the magnitude ofobserved March–April GOME-2 and OMI VCDtropo to within 17 %, as wellas their spatiotemporal variability (r=0.76–0.85). Many of the large-scalebromine explosions are successfully reproduced, with the exception of eventsin May, which are absent or systematically underpredicted in the model. Ifwe assume a lower salinity on MYI (0.01 psu), some of the bromine explosionsevents observed over MYI are not captured, suggesting that blowing snow overMYI is an important source of bromine activation. We find that the modeledatmospheric deposition onto snow-covered sea ice becomes highly enriched inbromide, increasing from enrichment factors of ∼5 inSeptember–February to 10–60 in May, consistent with composition observations of freshly fallen snow. We propose that this progressive enrichment indeposition could enable blowing-snow-induced halogen activation to propagateinto May and might explain our late-spring underestimate in VCDtropo.We estimate that the atmospheric deposition of SSA could increase snow salinityby up to 0.04 psu between February and April, which could be an importantsource of salinity for surface snow on MYI as well as FYI covered by deepsnowpack. Inclusion of halogen release from blowing-snow SSA in oursimulations decreases monthly mean Arctic surface O3 by 4–8 ppbv(15 %–30 %) in March and 8–14 ppbv (30 %–40 %) in April. We reproduce atransport event of depleted O3 Arctic air down to 40∘ Nobserved at many sub-Arctic surface sites in early April 2007. While oursimulation captures 25 %–40 % of the ODEs observed at coastal Arctic surfacesites, it underestimates the magnitude of many of these events and entirelymisses 60 %–75 % of ODEs. This difficulty in reproducing observed surfaceODEs could be related to the coarse horizontal resolution of the model, theknown biases in simulating Arctic boundary layer exchange processes, thelack of detailed chlorine chemistry, and/or the fact that we did not includedirect halogen activation by snowpack chemistry. 
    more » « less
  4. Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm) records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔεLAND) from discrete gas measurements in the WAIS Divide (WD) and Siple Dome (SD) Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔεLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 – periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP)-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production), we propose a simple mechanism by which ΔεLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔεLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔεLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔεLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔεLAND
    more » « less
  5. Abstract. Sea salt aerosols play an important role in the radiationbudget and atmospheric composition over the Arctic, where the climate israpidly changing. Previous observational studies have shown that Arctic sea ice leads are an important source of sea salt aerosols, and modeling efforts have also proposed blowing snow sublimation as a source. In this study,size-resolved atmospheric particle number concentrations and chemicalcomposition were measured at the Arctic coastal tundra site ofUtqiaġvik, Alaska, during spring (3 April–7 May 2016). Blowing snow conditions were observed during 25 % of the 5-week study period andwere overpredicted by a commonly used blowing snow parameterization based solely on wind speed and temperature. Throughout the study, open leads werepresent locally. During periods when blowing snow was observed, significantincreases in the number concentrations of 0.01–0.06 µm particles(factor of 6, on average) and 0.06–0.3 µm particles (67 %, on average) and a significant decrease (82 %, on average) in 1–4 µmparticles were observed compared to low wind speed periods. These size distribution changes were likely caused by the generation of ultrafineparticles from leads and/or blowing snow, with scavenging of supermicronparticles by blowing snow. At elevated wind speeds, both submicron andsupermicron sodium and chloride mass concentrations were enhanced,consistent with wind-dependent local sea salt aerosol production. Atmoderate wind speeds below the threshold for blowing snow as well as during observed blowing snow, individual sea spray aerosol particles were measured.These individual salt particles were enriched in calcium relative to sodiumin seawater due to the binding of this divalent cation with organic matter in the sea surface microlayer and subsequent enrichment during seawaterbubble bursting. The chemical composition of the surface snowpack alsoshowed contributions from sea spray aerosol deposition. Overall, theseresults show the contribution of sea spray aerosol production from leads onboth aerosols and the surface snowpack. Therefore, if blowing snowsublimation contributed to the observed sea salt aerosol, the snow beingsublimated would have been impacted by sea spray aerosol deposition rather than upward brine migration through the snowpack. Sea spray aerosol production from leads is expected to increase, with thinning and fracturingof sea ice in the rapidly warming Arctic. 
    more » « less