Correlations between entangled photons are a key ingredient for testing fundamental aspects of quantum mechanics and an invaluable resource for quantum technologies. However, scattering from a dynamic medium typically scrambles and averages out such correlations. Here we show that multiply scattered entangled photons reflected from a dynamic complex medium remain partially correlated. In experiments and full-wave simulations we observe enhanced correlations, within an angular range determined by the transport mean free path, which prevail over disorder averaging. Theoretical analysis reveals that this enhancement arises from the interference between scattering trajectories, in which the photons leave the sample and are then virtually reinjected back into it. These paths are the quantum counterpart of the paths that lead to the coherent backscattering of classical light. This work points to opportunities for entanglement transport despite dynamic multiple scattering in complex systems.
more »
« less
Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium
The weak localization or enhanced backscattering phenomenon has received a lot of attention in the literature. The enhanced backscattering cone refers to the situation that the wave backscattered by a random medium exhibits an enhanced intensity in a narrow cone around the incoming wave direction. This phenomenon can be analyzed by a formal path integral approach. Here a mathematical derivation of this result is given based on a system of equations that describes the second-order moments of the reflected wave. This system derives from a multiscale stochastic analysis of the wave field in the situation with high-frequency waves and propagation through a lossy medium with fine scale random microstructure. The theory identifies a duality relation between the spreading of the wave and the enhanced backscattering cone. It shows how the cone, its regularity and width relate to the statistical structure of the random medium. We discuss how this information in particular can be used to estimate the internal structure of the random medium based on observations of the reflected wave.
more »
« less
- Award ID(s):
- 2010046
- PAR ID:
- 10281513
- Date Published:
- Journal Name:
- Discrete and continuous dynamical systems
- Volume:
- 26
- Issue:
- 2
- ISSN:
- 1937-1179
- Page Range / eLocation ID:
- 1171-1195
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study temporal reflection of an optical pulse from the refractive-index barrier created by a short pump soliton inside a nonlinear dispersive medium such as an optical fiber. One feature is that the soliton’s speed changes continuously as its spectrum redshifts because of intrapulse Raman scattering. We use the generalized nonlinear Schrödinger equation to find the shape and spectrum of the reflected pulse. Both are affected considerably by the soliton’s trajectory. The reflected pulse can become considerably narrower compared to the incident pulse under conditions that involve a type of temporal focusing. This phenomenon is explained through space–time duality by showing that the temporal situation is analogous to an optical beam incident obliquely on a parabolic mirror. We obtain an approximate analytic expression for the reflected pulse’s spectrum and use it to derive the temporal version of the transformation law for the parameter associated with a Gaussian beam.more » « less
-
We present a theory for wave scintillation in the situation of a time-dependent partially coherent source and a time-dependent randomly heterogeneous medium. Our objective is to understand how the scintillation index of the measured intensity depends on the source and medium parameters. We deduce from an asymptotic analysis of the random wave equation a general form of the scintillation index, and we evaluate this in various scaling regimes. The scintillation index is a fundamental quantity that is used to analyze and optimize imaging and communication schemes. Our results are useful to quantify the scintillation index under realistic propagation scenarios and to address such optimization challenges.more » « less
-
When waves propagate through a complex medium like the turbulent atmosphere the wave field becomes incoherent and the wave intensity forms a complex speckle pattern. In this paper we study a speckle memory effect in the frequency domain and some of its consequences. This effect means that certain properties of the speckle pattern produced by wave transmission through a randomly scattering medium is preserved when shifting the frequency of the illumination. The speckle memory effect is characterized via a detailed novel analysis of the fourth-order moment of the random paraxial Green's function at four different frequencies. We arrive at a precise characterization of the frequency memory effect and what governs the strength of the memory. As an application we quantify the statistical stability of time-reversal wave refocusing through a randomly scattering medium in the paraxial or beam regime. Time reversal refers to the situation when a transmitted wave field is recorded on a time-reversal mirror then time reversed and sent back into the complex medium. The re-emitted wave field then refocuses at the original source point. We compute the mean of the refocused wave and identify a novel quantitative description of its variance in terms of the radius of the time-reversal mirror, the size of its elements, the source bandwidth, and the statistics of the random medium fluctuations.more » « less
-
Abstract In many situations, the combined effect of advection and diffusion greatly increases the rate of convergence to equilibrium—a phenomenon known asenhanced dissipation. Here we study the situation where the advecting velocity field generates a random dynamical system satisfying certainHarris conditions. Ifκdenotes the strength of the diffusion, then we show that with probability at least enhanced dissipation occurs on time scales of order , a bound which is known to be optimal. Moreover, on long time scales, we show that the rate of convergence to equilibrium is almost surelyindependentof diffusivity. As a consequence we obtain enhanced dissipation for the randomly shifted alternating shears introduced by Pierrehumbert’94.more » « less
An official website of the United States government

