skip to main content


Title: Spectral causality and the scattering of waves

Causality—the principle stating that the output of a system cannot temporally precede the input—is a universal property of nature. Here, we show that analogous input-output relations can also be realized in the spectral domain by leveraging the peculiar properties of time-modulated non-Hermitian photonic systems. Specifically, we uncover the existence of a broad class of complex time-modulated metamaterials that obey the time-domain equivalent of the well-established frequency-domain Kramers–Kronig relations (a direct consequence of causality). We find that, in the scattering response of such time-modulated systems, the output frequencies are inherently prohibited from spectrally preceding the input frequencies, and hence we refer to these systems as “spectrally causal.” We explore the consequences of this newly introduced concept for several relevant applications, including broadband perfect absorption, temporal cloaking of an “event,” and truly unidirectional propagation along a synthetic dimension. By emulating the concept of causality in the spectral domain and providing new tools to extend the field of temporally modulated metamaterials (“chrono-metamaterials”) into the complex realm, our findings may open unexplored opportunities and enable relevant technological advances in various areas of photonics and, more broadly, of wave physics and engineering.

 
more » « less
Award ID(s):
1741694
NSF-PAR ID:
10281549
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
8
Issue:
8
ISSN:
2334-2536
Page Range / eLocation ID:
Article No. 1040
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We outline and interpret a recently developed theory of impedance matching or reflectionless excitation of arbitrary finite photonic structures in any dimension. The theory includes both the case of guided wave and free-space excitation. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be possible and specifies how many physical parameters must be tuned to achieve this. In the absence of geometric symmetries, such as parity and time-reversal, the product of parity and time-reversal, or rotational symmetry, the tuning of at least one structural parameter will be necessary to achieve reflectionless excitation. The theory employs a recently identified set of complex frequency solutions of the Maxwell equations as a starting point, which are defined by having zero reflection into a chosen set of input channels, and which are referred to as R-zeros. Tuning is generically necessary in order to move an R-zero to the real frequency axis, where it becomes a physical steady-state impedance-matched solution, which we refer to as a reflectionless scattering mode (RSM). In addition, except in single-channel systems, the RSM corresponds to a particular input wavefront, and any other wavefront will generally not be reflectionless. It is useful to consider the theory as representing a generalization of the concept of critical coupling of a resonator, but it holds in arbitrary dimension, for arbitrary number of channels, and even when resonances are not spectrally isolated. In a structure with parity and time-reversal symmetry (a real dielectric function) or with parity–time symmetry, generically a subset of the R-zeros has real frequencies, and reflectionless states exist at discrete frequencies without tuning. However, they do not exist within every spectral range, as they do in the special case of the Fabry–Pérot or two-mirror resonator, due to a spontaneous symmetry-breaking phenomenon when two RSMs meet. Such symmetry-breaking transitions correspond to a new kind of exceptional point, only recently identified, at which the shape of the reflection and transmission resonance lineshape is flattened. Numerical examples of RSMs are given for one-dimensional multimirror cavities, a two-dimensional multiwaveguide junction, and a multimode waveguide functioning as a perfect mode converter. Two solution methods to find R-zeros and RSMs are discussed. The first one is a straightforward generalization of the complex scaling or perfectly matched layer method and is applicable in a number of important cases; the second one involves a mode-specific boundary matching method that has only recently been demonstrated and can be applied to all geometries for which the theory is valid, including free space and multimode waveguide problems of the type solved here. 
    more » « less
  2. Abstract

    Bound states in the continuum (BIC) is an exotic concept describing systems without radiative loss. BICs are widely investigated in optics due to numerous potential applications including lasing, sensing, and filtering, among others. This study introduces a structurally tunable BIC terahertz metamaterial fabricated using micromachining and experimentally characterized using terahertz time domain spectroscopy. Control of the bending angle of the metamaterial by thermal actuation modifies the capacitance enabling tuning from a quasi‐BIC state with a quality factor of 26 to the BIC state. The dynamic response from the quasi‐BIC state to the BIC state is achieved by blueshifting the resonant frequency of the LC mode while maintaining a constant resonant frequency for the dipole mode. Additional insight into the tunable electromagnetic response is obtained using temporal coupled mode theory (CMT). The results reveal the effectiveness of bi‐layer cantilever‐based structures to realize tunable BIC metamaterials with potential applications for nonlinear optics and light‐matter control at terahertz frequencies.

     
    more » « less
  3. SUMMARY A fleet of autonomously drifting profiling floats equipped with hydrophones, known by their acronym mermaid, monitors worldwide seismic activity from inside the oceans. The instruments are programmed to detect and transmit acoustic pressure conversions from teleseismic P wave arrivals for use in mantle tomography. Reporting seismograms in near-real time, within hours or days after they were recorded, the instruments are not usually recovered, but if and when they are, their memory buffers can be read out. We present a unique 1-yr-long data set of sound recorded at frequencies between 0.1 and 20 Hz in the South Pacific around French Polynesia by a mermaid float that was, in fact, recovered. Using time-domain, frequency-domain and time-frequency-domain techniques to comb through the time-series, we identified signals from 213 global earthquakes known to published catalogues, with magnitudes 4.6–8.0, and at epicentral distances between 24° and 168°. The observed signals contain seismoacoustic conversions of compressional and shear waves travelling through crust, mantle and core, including P, S, Pdif, Sdif, PKIKP, SKIKS, surface waves and hydroacoustic T phases. Only 10 earthquake records had been automatically reported by the instrument—the others were deemed low-priority by the onboard processing algorithm. After removing all seismic signals from the record, and also those from other transient, dominantly non-seismic, sources, we are left with the infrasonic ambient noise field recorded at 1500 m depth. We relate the temporally varying noise spectral density to a time-resolved ocean-wave model, WAVEWATCH III. The noise record is extremely well explained, both in spectral shape and in temporal variability, by the interaction of oceanic surface gravity waves. These produce secondary microseisms at acoustic frequencies between 0.1 and 1 Hz according to the well-known frequency-doubling mechanism. 
    more » « less
  4. Systematically reasoning about the fine-grained causes of events in a real-world distributed system is challenging. Causality, from the distributed systems literature, can be used to compute the causal history of an arbitrary event in a distributed system, but the event's causal history is an over-approximation of the true causes. Data provenance, from the database literature, precisely describes why a particular tuple appears in the output of a relational query, but data provenance is limited to the domain of static relational databases. In this paper, we present wat-provenance: a novel form of provenance that provides the benefits of causality and data provenance. Given an arbitrary state machine, wat-provenance describes why the state machine produces a particular output when given a particular input. This enables system developers to reason about the causes of events in real-world distributed systems. We observe that automatically extracting the wat-provenance of a state machine is often infeasible. Fortunately, many distributed systems components have simple interfaces from which a developer can directly specify wat-provenance using a technique we call wat-provenance specifications. Leveraging the theoretical foundations of wat-provenance, we implement a prototype distributed debugging framework called Watermelon. 
    more » « less
  5. Spectral and temporal mode matching are required for the efficient interaction of photons and quantum memories. In our previous work [Opt. Lett.45,5688(2020).10.1364/OL.404891], we proposed a new route to spectrally compress broadband photons to achieve spectral mode matching with narrowband memories, using a linear, time-variant optical cavity based on rapid switching of input coupling. In this work, we extend our approach to attain temporal mode matching as well by exploiting the time variation of output coupling of the cavity. We numerically analyze the mode matching and loss performance of our time-varying cavity and present a possible implementation in integrated photonics.

     
    more » « less