skip to main content

Title: Impact Evaluation of Falsified Data Attacks on Connected Vehicle Based Traffic Signal Control Systems
Connected vehicle (CV) technologies enable data exchange between vehicles and transportation infrastructure. In a CV environment, traffic signal control systems receive CV trajectory data through vehicle-to-infrastructure (V2I) communications to make control decisions. Comparing with existing data collection methods (e.g., from loop-detectors), the CV trajectory data provide much richer information, and therefore have great potentials to improve the system performance by reducing total vehicle delay at signalized intersections. However, this connectivity might also bring cyber security concerns. In this paper, we aim to investigate the security problem of CV-based traffic signal control (CV-TSC) systems. Specifically, we focus on evaluating the impact of falsified data attacks on the system performance. A black-box attack scenario, in which the control logic of a CV-TSC system is unavailable to attackers, is considered. A two-step attack model is constructed. In the first step, the attacker tries to learn the control logic using a surrogate model. Based on the surrogate model, in the second step, the attacker launches falsified data attacks to influence the control systems to make sub-optimal control decisions. In the case study, we apply the attack model to an existing CV-TSC system (i.e., I-SIG) and find intersection delay can be significantly increased. Finally, we discuss more » some promising defense directions. « less
Authors:
; ; ; ; ;
Award ID(s):
1850533 1929771
Publication Date:
NSF-PAR ID:
10281630
Journal Name:
NDSS Workshop on Automotive and Autonomous Vehicle Security (AutoSec)
Sponsoring Org:
National Science Foundation
More Like this
  1. With the development of the emerging Connected Vehicle (CV) technology, vehicles can wirelessly communicate with traffic infrastructure and other vehicles to exchange safety and mobility information in real time. However, the integrated communication capability inevitably increases the attack surface of vehicles, which can be exploited to cause safety hazard on the road. Thus, it is highly desirable to systematically understand design-level flaws in the current CV network stack as well as in CV applications, and the corresponding security/safety consequences so that these flaws can be proactively discovered and addressed before large-scale deployment. In this paper, we design CVAnalyzer, a system for discovering design-level flaws for availability violations of the CV network stack, as well as quantifying the corresponding security/safety consequences. To achieve this, CVAnalyzer combines the attack discovery capability of a general model checker and the quantitative threat assessment capability of a probabilistic model checker. Using CVAnalyzer, we successfully uncovered 4 new DoS (Denial-of-Service) vulnerabilities of the latest CV network protocols and 14 new DoS vulnerabilities of two CV platoon management protocols. Our quantification results show that these attacks can have as high as 99% success rates, and in the worst case can at least double the delay in packetmore »processing, violating the latency requirement in CV communication.We implemented and validated all attacks in a real-world testbed, and also analyzed the fundamental causes to propose potential solutions. We have reported our findings in the CV network protocols to the IEEE 1609 Working Group, and the group has acknowledged the discovered vulnerabilities and plans to adopt our solutions.« less
  2. Connected vehicle (CV) systems are cognizant of potential cyber attacks because of increasing connectivity between its different components such as vehicles, roadside infrastructure and traffic management centers. However, it is a challenge to detect security threats in real-time and develop appropriate/effective countermeasures for a CV system because of the dynamic behavior of such attacks, high computational power requirement and a historical data requirement for training detection models. To address these challenges, statistical models, especially change point models, have potentials for real-time anomaly detections. Thus, the objective of this study is to investigate the efficacy of two change point models, Expectation Maximization (EM) and two forms of Cumulative Summation (CUSUM) algorithms (i.e., typical and adaptive), for real-time V2I cyber attack detection in a CV Environment. To prove the efficacy of these models, we evaluated these two models for three different type of cyber attack, denial of service (DOS), impersonation, and false information, using basic safety messages (BSMs) generated from CVs through simulation. Results from numerical analysis revealed that EM, CUSUM, and adaptive CUSUM could detect these cyber attacks, DOS, impersonation, and false information, with an accuracy of (99\%, 100\%, 100\%), (98\%, 100\%, 100\%), and (100\%, 98\%, 100\%) respectively.
  3. Location information is critical to a wide variety of navigation and tracking applications. GPS, today's de-facto outdoor localization system has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination and monitored by an INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We develop and evaluate algorithms that achieve this goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also design, build and demonstrate that themore »magnetometer can be actively spoofed using a combination of carefully controlled coils. To experimentally demonstrate and evaluate the feasibility of the attack in real-world, we implement a first real-time integrated GPS/INS spoofer that accounts for traffic fluidity, congestion, lights, and dynamically generates corresponding spoofing signals. Furthermore, we evaluate our attack on ten different cities using driving traces and publicly available city plans. Our evaluations show that it is possible for an attacker to reach destinations that are as far as 30 km away from the actual destination without being detected. We also show that it is possible for the adversary to reach almost 60--80% of possible points within the target region in some cities. Such results are only a lower-bound, as an adversary can adjust our parameters to spend more resources (e.g., time) on the target source/destination than we did for our performance evaluations of thousands of paths. We propose countermeasures that limit an attacker's ability, without the need for any hardware modifications. Our system can be used as the foundation for countering such attacks, both detecting and recommending paths that are difficult to spoof.« less
  4. Internet of Vehicles (IoV) in 5G is regarded as a backbone for intelligent transportation system in smart city, where vehicles are expected to communicate with drivers, with road-side wireless infrastructure, with other vehicles, with traffic signals and different city infrastructure using vehicle-to-vehicle (V2V) and/or vehicle-to-infrastructure (V2I) communications. In IoV, the network topology changes based on drivers' destination, intent or vehicles' movements and road structure on which the vehicles travel. In IoV, vehicles are assumed to be equipped with computing devices to process data, storage devices to store data and communication devices to communicate with other vehicles or with roadside infrastructure (RSI). It is vital to authenticate data in IoV to make sure that legitimate data is being propagated in IoV. Thus, security stands as a vital factor in IoV. The existing literature contains some limitations for robust security in IoV such as high delay introduced by security algorithms, security without privacy, unreliable security and reduced overall communication efficiency. To address these issues, this paper proposes the Elliptic Curve Cryptography (ECC) based Ant Colony Optimization Ad hoc On-demand Distance Vector (ACO-AODV) routing protocol which avoids suspicious vehicles during message dissemination in IoV. Specifically, our proposed protocol comprises three components: i) certificatemore »authority (CA) which maps vehicle's publicly available info such as number plates with cryptographic keys using ECC; ii) malicious vehicle (MV) detection algorithm which works based on trust level calculated using status message interactions; and iii) secure optimal path selection in an adaptive manner based on the intent of communications using ACO-AODV that avoids malicious vehicles. Experimental results illustrate that the proposed approach provides better results than the existing approaches.« less
  5. The emerging connected-vehicle technology provides a new dimension for developing more intelligent traffic control algorithms for signalized intersections. An important challenge for scheduling in networked transportation systems is the switchover delay caused by the guard time before any traffic signal change. The switch-over delay can result in significant loss of system capacity and hence needs to be accommodated in the scheduling design. To tackle this challenge, we propose a distributed online scheduling policy that extends the wellknown Max-Pressure policy to address switch-over delay by introducing a bias factor favoring the current schedule. We prove that the proposed policy is throughput-optimal with switch-over delay. Furthermore, the proposed policy remains optimal when there are both connected signalized intersections and conventional fixed-time ones in the system. With connected-vehicle technology, the proposed policy can be easily incorporated into the current transportation systems without additional infrastructure. Through extensive simulation in VISSIM, we show that our policy indeed outperforms the existing popular policies.