skip to main content

This content will become publicly available on December 1, 2022

Title: Inclement weather forces stopovers and prevents migratory progress for obligate soaring migrants
Abstract Background Migrating birds experience weather conditions that change with time, which affect their decision to stop or resume migration. Soaring migrants are especially sensitive to changing weather conditions because they rely on the availability of environmental updrafts to subsidize flight. The timescale that local weather conditions change over is on the order of hours, while stopovers are studied at the daily scale, creating a temporal mismatch. Methods We used GPS satellite tracking data from four migratory Turkey Vulture ( Cathartes aura ) populations, paired with local weather data, to determine if the decision to stopover by migrating Turkey Vultures was in response to changing local weather conditions. We analyzed 174 migrations of 34 individuals from 2006 to 2019 and identified 589 stopovers based on variance of first passage times. We also investigated if the extent of movement activity correlated with average weather conditions experienced during a stopover, and report general patterns of stopover use by Turkey Vultures between seasons and across populations. Results Stopover duration ranged from 2 h to more than 11 days, with 51 % of stopovers lasting < 24 h. Turkey Vultures began stopovers immediately in response to changes in weather variables that did not favor thermal soaring (e.g., increasing precipitation more » fraction and decreasing thermal updraft velocity) and their departure from stopovers was associated with improvements in weather that favored thermal development. During stopovers, proportion of activity was negatively associated with precipitation but was positively associated with temperature and thermal updraft velocity. Conclusions The rapid response of migrating Turkey Vultures to changing weather conditions indicates weather-avoidance is one of the major functions of their stopover use. During stopovers, however, the positive relationship between proportion of movement activity and conditions that promote thermal development suggests not all stopovers are used for weather-avoidance. Our results show that birds are capable of responding rapidly to their environment; therefore, for studies interested in external drivers of weather-related stopovers, it is essential that stopovers be identified at fine temporal scales. « less
Authors:
; ;
Award ID(s):
1915347 1853465
Publication Date:
NSF-PAR ID:
10281664
Journal Name:
Movement Ecology
Volume:
9
Issue:
1
ISSN:
2051-3933
Sponsoring Org:
National Science Foundation
More Like this
  1. The dynamic weather conditions that migrating birds experience during flight likely influence where they stop to rest and refuel, particularly after navigating inhospitable terrain or large water bodies, but effects of weather on stopover patterns remain poorly studied. We examined the influence of broad-scale weather conditions encountered by nocturnally migrating Nearctic-Neotropical birds during northward flight over the Gulf of Mexico (GOM) on subsequent coastal stopover distributions. We categorized nightly weather patterns using historic maps and quantified region-wide densities of birds in stopover habitat with data collected by 10 weather surveillance radars from 2008 to 2015. We found spring weather patternsmore »over the GOM were most often favorable for migrating birds, with winds assisting northward flight, and document regional stopover patterns in response to specific unfavorable weather conditions. For example, Midwest Continental High is characterized by strong northerly winds over the western GOM, resulting in high-density concentrations of migrants along the immediate coastlines of Texas and Louisiana. We show, for the first time, that broad-scale weather experienced during flight influences when and where birds stop to rest and refuel. Linking synoptic weather patterns encountered during flight with stopover distributions contributes to the emerging macro-ecological understanding of bird migration, which is critical to consider in systems undergoing rapid human-induced changes.« less
  2. The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With advances in positioning and sensor technologies, it is now possible to capture animal locations at high spatial and temporal granularities. Likewise, modern space-based remote sensing technology provides us with an increasing access to large volumes of environmental data, some of which changes on an hourly basis. Environmental data are heterogeneous in source and format, and are usually obtained at different scales and granularities than movement data. Indeed, there remain scientific and technical challenges in developing linkagesmore »between the growing collections of animal movement data and the large repositories of heterogeneous remote sensing observations, as well as in the developments of new statistical and computational methods for the analysis of movement in its environmental context. These challenges include retrieval, indexing, efficient storage, data integration, and analytic techniques. We have developed a new system - the Environmental-Data Automated Track Annotation (Env-DATA) - that automates annotation of movement trajectories with remote-sensing environmental information, including high resolution topography, weather from global and regional reanalysis datasets, climatology, human geography, ocean currents and productivity, land use, vegetation and land surface variables, precipitation, fire, and other global datasets. The system automates the acquisition of data from open web resources of remote sensing and weather data and provides several interpolation methods from the native grid resolution and structure to a global regular grid linked with the movement tracks in space and time. Env-DATA provides an easy-to-use platform for end users that eliminates technical difficulties of the annotation processes, including data acquisition, data transformation and integration, resampling, interpolation and interpretation. The new Env-DATA system enhances Movebank (www.movebank.org), an open portal of animal tracking data. The aim is to facilitate new understanding and predictive capabilities of spatiotemporal patterns of animal movement in response to dynamic and changing environments from local to global scales. The system is already in use by scientists worldwide, and by several conservation managers, such as the consortium of federal and private institution that manage the endangered Californian Condor populations.« less
  3. Abstract A major driver of wildlife responses to climate change will include non-genomic effects, like those mediated through parental behavior and physiology (i.e., parental effects). Parental effects can influence lifetime reproductive success and survival, and thus population-level processes. However, the extent to which parental effects will contribute to population persistence or declines in response to climate change is not well understood. These effects may be substantial for species that exhibit extensive parental care behaviors, like birds. Environmental temperature is important in shaping avian incubation behavior, and these factors interact to determine the thermal conditions embryos are exposed to during development,more »and subsequently avian phenotypes and secondary sex ratios. In this article, we argue that incubation behavior may be an important mediator of avian responses to climate change, we compare incubation strategies of two species adapted to different thermal environments nesting in extreme heat, and we present a simple model that estimates changes in egg temperature based on these incubation patterns and predicted increases in maximum daily air temperature. We demonstrate that the predicted increase in air temperature by 2100 in the central USA will increase temperatures that eggs experience during afternoon off-bouts and the proportion of nests exposed to lethal temperatures. To better understand how species and local adaptations and behavioral-plasticity of incubation behavior will contribute to population responses to climate change comparisons are needed across more avian populations, species, and thermal landscapes.« less
  4. Songbirds meet the extreme metabolic demands of migration by burning both stored fat and protein. However, catabolizing these endogenous tissues for energy leads to organ atrophy, and reductions in gastrointestinal tissue can be as great as 50% of the pre-flight mass. Remarkably, during stopover refuelling birds quickly regain digestive mass and performance. Aminopep- tidase-N (APN) is a brush-border enzyme responsible for late-stage protein digestion and may critically assist tissue reconstruction during the stopover, thus compensating for reduced gut size. We hypothesized that birds recover- ing from a fast would differentially upregulate APN activity relative to disaccharidases to rapidly process andmore »assimilate dietary protein into lean mass. We fasted 23 wild-caught migratory white-throated sparrows (Zonotrichia albicollis) for 48h to mimic mass reductions experienced during migratory flight and measured intestinal APN activity before the fast, immediately after the fast, and during recovery at 24 h and 48 h post- fast. Total fat mass, lean mass and basal metabolic rate were measured daily. We show that fasted birds maintain APN activity through the fast, despite a 30% reduction in intestine mass, but during refuelling, APN activity increases nearly twofold over pre-fasted individuals. This suggests that dynamically regulating APN may be necessary for rapid protein reconstruction during the stopover.« less
  5. Abstract Erosion, hydrothermal activity, and magmatism at volcanoes can cause large and unexpected mass wasting events. Large fluidized debris flows have occurred within the past 6000 yr at Mount Adams, Washington, and present a hazard to communities downstream. In August 2017, we began a pilot experiment to investigate the potential of infrasound arrays for detecting and tracking debris flows at Mount Adams. We deployed a telemetered four-element infrasound array (BEAR, 85 m aperture), ~11 km from a geologically unstable area where mass wasting has repeatedly originated. We present a preliminary analysis of BEAR data, representing a survey of the ambient infrasound and noisemore »environment at this quiescent stratovolcano. Array processing reveals near continuous and persistent infrasound signals arriving from the direction of Mount Adams, which we hypothesize are fluvial sounds from the steep drainages on the southwest flank. We interpret observed fluctuations in the detectability of these signals as resulting from a combination of (1) wind-noise variations at the array, (2) changes in local infrasound propagation conditions associated with atmospheric boundary layer variability, and (3) changing water flow speeds and volumes in the channels due to freezing, thawing, and precipitation events. Suspected mass movement events during the study period are small (volumes <105  m3 and durations <2 min), with one of five visually confirmed events detected infrasonically at BEAR. We locate this small event, which satellite imagery suggests was a glacial avalanche, using three additional temporary arrays operating for five days in August 2018. Events large enough to threaten downstream communities would likely produce stronger infrasonic signals detectable at BEAR. In complement to recent literature demonstrating the potential for infrasonic detection of volcano mass movements (Allstadt et al., 2018), this study highlights the practical and computational challenges involved in identifying signals of interest in the expected noisy background environment of volcanic topography and drainages.« less