skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1853465

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Consumers must track and acquire resources in complex landscapes. Much discussion has focused on the concept of a ‘resource gradient’ and the mechanisms by which consumers can take advantage of such gradients as they navigate their landscapes in search of resources. However, the concept of tracking resource gradients means different things in different contexts. Here, we take a synthetic approach and consider six different definitions of what it means to search for resources based on density or gradients in density. These include scenarios where consumers change their movement behavior based on the density of conspecifics, on the density of resources, and on spatial or temporal gradients in resources. We also consider scenarios involving non-local perception and a form of memory. Using a continuous space, continuous time model that allows consumers to switch between resource-tracking and random motion, we investigate the relative performance of these six different strategies. Consumers’ success in matching the spatiotemporal distributions of their resources differs starkly across the six scenarios. Movement strategies based on perception and response to temporal (rather than spatial) resource gradients afforded consumers with the best opportunities to match resource distributions. All scenarios would allow for optimization of resource-matching in terms of the underlying parameters, providing opportunities for evolutionary adaptation, and links back to classical studies of foraging ecology.

    more » « less
  2. Abstract

    Migratory birds have the capacity to shift their migration phenology in response to climatic change. Yet the mechanistic underpinning of changes in migratory timing remain poorly understood. We employed newly developed global positioning system (GPS) tracking devices and long-term dataset of migration passage timing to investigate how behavioral responses to environmental conditions relate to phenological shifts in American robins (Turdus migratorius) during spring migration to Arctic-boreal breeding grounds. We found that over the past quarter-century (1994–2018), robins have migrated ca. 5 d/decade earlier. Based on GPS data collected for 55 robins over three springs (2016–2018), we found the arrival timing and likelihood of stopovers, and timing of arrival to breeding grounds, were strongly influenced by dynamics in snow conditions along migratory paths. These findings suggest plasticity in migratory behavior may be an important mechanism for how long-distance migrants adjust their breeding phenology to keep pace with advancement of spring on breeding grounds.

    more » « less
  3. Abstract

    Many important demographic processes are seasonal, including survival. For many species, mortality risk is significantly higher at certain times of the year than at others, whether because resources are scarce, susceptibility to predators or disease is high, or both. Despite the importance of survival modelling in wildlife sciences, no tools are available to estimate the peak, duration and relative importance of these ‘seasons of mortality’.

    We presentcyclomort, anrpackage that estimates the timing, duration and intensity of any number of mortality seasons with reliable confidence intervals. The package includes a model selection approach to determine the number of mortality seasons and to test whether seasons of mortality vary across discrete grouping factors.

    We illustrate the periodic hazard function model and workflow of cyclomort with simulated data. We then estimate mortality seasons of two caribouRangifer taranduspopulations that have strikingly different mortality patterns, including different numbers and timing of mortality peaks, and a marked change in one population over time.

    Thecyclomortpackage was developed to estimate mortality seasons for wildlife, but the package can model any time‐to‐event processes with a periodic component.

    more » « less
  4. Abstract

    Accurately quantifying species’ area requirements is a prerequisite for effective area‐based conservation. This typically involves collecting tracking data on species of interest and then conducting home‐range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home‐range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross‐validation to quantify bias in empirical home‐range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation‐induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home‐range estimates. As a correction, we tested whether data thinning or autocorrelation‐informed home‐range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation‐informed home‐range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum.

    more » « less
  5. The ability of wild animals to navigate and survive in complex and dynamic environments depends on their ability to store relevant information and place it in a spatial context. Despite the centrality of spatial memory, and given our increasing ability to observe animal movements in the wild, it is perhaps surprising how difficult it is to demonstrate spatial memory empirically. We present a cognitive analysis of movements of several wolves ( Canis lupus ) in Finland during a summer period of intensive hunting and den-centered pup-rearing. We tracked several wolves in the field by visiting nearly all GPS locations outside the den, allowing us to identify the species, location and timing of nearly all prey killed. We then developed a model that assigns a spatially explicit value based on memory of predation success and territorial marking. The framework allows for estimation of multiple cognitive parameters, including temporal and spatial scales of memory. For most wolves, fitted memory-based models outperformed null models by 20 to 50% at predicting locations where wolves chose to forage. However, there was a high amount of individual variability among wolves in strength and even direction of responses to experiences. Some wolves tended to return to locations with recent predation success—following a strategy of foraging site fidelity—while others appeared to prefer a site switching strategy. These differences are possibly explained by variability in pack sizes, numbers of pups, and features of the territories. Our analysis points toward concrete strategies for incorporating spatial memory in the study of animal movements while providing nuanced insights into the behavioral strategies of individual predators. 
    more » « less
  6. null (Ed.)
    Abstract Background Migrating birds experience weather conditions that change with time, which affect their decision to stop or resume migration. Soaring migrants are especially sensitive to changing weather conditions because they rely on the availability of environmental updrafts to subsidize flight. The timescale that local weather conditions change over is on the order of hours, while stopovers are studied at the daily scale, creating a temporal mismatch. Methods We used GPS satellite tracking data from four migratory Turkey Vulture ( Cathartes aura ) populations, paired with local weather data, to determine if the decision to stopover by migrating Turkey Vultures was in response to changing local weather conditions. We analyzed 174 migrations of 34 individuals from 2006 to 2019 and identified 589 stopovers based on variance of first passage times. We also investigated if the extent of movement activity correlated with average weather conditions experienced during a stopover, and report general patterns of stopover use by Turkey Vultures between seasons and across populations. Results Stopover duration ranged from 2 h to more than 11 days, with 51 % of stopovers lasting < 24 h. Turkey Vultures began stopovers immediately in response to changes in weather variables that did not favor thermal soaring (e.g., increasing precipitation fraction and decreasing thermal updraft velocity) and their departure from stopovers was associated with improvements in weather that favored thermal development. During stopovers, proportion of activity was negatively associated with precipitation but was positively associated with temperature and thermal updraft velocity. Conclusions The rapid response of migrating Turkey Vultures to changing weather conditions indicates weather-avoidance is one of the major functions of their stopover use. During stopovers, however, the positive relationship between proportion of movement activity and conditions that promote thermal development suggests not all stopovers are used for weather-avoidance. Our results show that birds are capable of responding rapidly to their environment; therefore, for studies interested in external drivers of weather-related stopovers, it is essential that stopovers be identified at fine temporal scales. 
    more » « less
  7. Seasonal migrations are a widespread and broadly successful strategy for animals to exploit periodic and localized resources over large spatial scales. It remains an open and largely case-specific question whether long-distance migrations are resilient to environmental disruptions. High levels of mobility suggest an ability to shift ranges that can confer resilience. On the other hand, a conservative, hard-wired commitment to a risky behavior can be costly if conditions change. Mechanisms that contribute to migration include identification and responsiveness to resources, sociality, and cognitive processes such as spatial memory and learning. Our goal was to explore the extent to which these factors interact not only to maintain a migratory behavior but also to provide resilience against environmental changes. We develop a diffusion-advection model of animal movement in which an endogenous migratory behavior is modified by recent experiences via a memory process, and animals have a social swarming-like behavior over a range of spatial scales. We found that this relatively simple framework was able to adapt to a stable, seasonal resource dynamic under a broad range of parameter values. Furthermore, the model was able to acquire an adaptive migration behavior with time. However, the resilience of the process depended on all the parameters under consideration, with many complex trade-offs. For example, the spatial scale of sociality needed to be large enough to capture changes in the resource, but not so large that the acquired collective information was overly diluted. A long-term reference memory was important for hedging against a highly stochastic process, but a higher weighting of more recent memory was needed for adapting to directional changes in resource phenology. Our model provides a general and versatile framework for exploring the interaction of memory, movement, social and resource dynamics, even as environmental conditions globally are undergoing rapid change. 
    more » « less
  8. Perception is central to the survival of an individual for many reasons, especially as it affects the ability to gather resources. Consequently, costs associated with perception are partially shaped by resource availability. Understanding the interplay of environmental factors (such as the density and distribution of resources) with species-specific factors (such as growth rate, mutation, and metabolic costs) allows the exploration of possible trajectories by which perception may evolve. Here, we used an agent-based foraging model with a context-dependent movement strategy in which each agent switches between undirected and directed movement based on its perception of resources. This switching behavior is central to our goal of exploring how environmental and species-specific factors determine the evolution and maintenance of perception in an ecological system. We observed a non-linear response in the evolved perceptual ranges as a function of parameters in our model. Overall, we identified two groups of parameters, one of which promotes evolution of perception and another group that restricts it. We found that resource density, basal energy cost, perceptual cost and mutation rate were the best predictors of the resultant perceptual range distribution, but detailed exploration indicated that individual parameters affect different parts of the distribution in different ways. 
    more » « less
  9. null (Ed.)
    Integrating diverse concepts from animal behavior, movement ecology, and machine learning, we develop an overview of the ecology of learning and animal movement. Learning-based movement is clearly relevant to ecological problems, but the subject is rooted firmly in psychology, including a distinct terminology. We contrast this psychological origin of learning with the task-oriented perspective on learning that has emerged from the field of machine learning. We review conceptual frameworks that characterize the role of learning in movement, discuss emerging trends, and summarize recent developments in the analysis of movement data. We also discuss the relative advantages of different modeling approaches for exploring the learning-movement interface. We explore in depth how individual and social modalities of learning can matter to the ecology of animal movement, and highlight how diverse kinds of field studies, ranging from translocation efforts to manipulative experiments, can provide critical insight into the learning process in animal movement. 
    more » « less
  10. null (Ed.)