Abstract We explore the possibility to use advanced germanium (Ge) detectors as a low-energy solar neutrino observatory by means of neutrino-nucleus elastic scattering. A Ge detector utilizing internal charge amplification for the charge carriers created by the ionization of impurities is a novel technology with experimental sensitivity for detecting low-energy solar neutrinos. Ge internal charge amplification (GeICA) detectors will amplify the charge carriers induced by neutrino interacting with Ge atoms through the emission of phonons. It is those phonons that will create charge carriers through the ionization of impurities to achieve an extremely low energy threshold of ∼0.01 eV. We demonstrate the phonon absorption, excitation, and ionization probability of impurities in a Ge detector with impurity levels of 3 × 10 10 cm −3 , 9 × 10 10 cm −3 , and 2 × 10 11 cm −3 . We present the sensitivity of such a Ge experiment for detecting solar neutrinos in the low-energy region. We show that, if GeICA technology becomes available, then a new opportunity arises to observe pp and 7 Be solar neutrinos. Such a novel detector with only 1 kg of high-purity Ge will give ∼10 events per year for pp neutrinos and ∼5 events per year for 7 Be neutrinos with a detection energy threshold of 0.01 eV. 
                        more » 
                        « less   
                    
                            
                            Investigation of the electrical conduction mechanisms in P-type amorphous germanium electrical contacts for germanium detectors in searching for rare-event physics
                        
                    
    
            Abstract For the first time, electrical conduction mechanisms in the disordered material system is experimentally studied for p-type amorphous germanium (a-Ge) used for high-purity Ge detector contacts. The localization length and the hopping parameters in a-Ge are determined using the surface leakage current measured from three high-purity planar Ge detectors. The temperature dependent hopping distance and hopping energy are obtained for a-Ge fabricated as the electrical contact materials for high-purity Ge planar detectors. As a result, we find that the hopping energy in a-Ge increases as temperature increases while the hopping distance in a-Ge decreases as temperature increases. The localization length of a-Ge is on the order of $$2.13^{-0.05}_{+0.07}\mathrm{{A}}^\circ $$ 2 . 13 + 0.07 - 0.05 A ∘ to $$5.07^{-0.83}_{+2.58}\mathrm{{A}}^\circ $$ 5 . 07 + 2.58 - 0.83 A ∘ , depending on the density of states near the Fermi energy level within bandgap. Using these parameters, we predict that the surface leakage current from a Ge detector with a-Ge contacts can be much smaller than one yocto amp (yA) at helium temperature, suitable for rare-event physics searches. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1743790
- PAR ID:
- 10281709
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 80
- Issue:
- 10
- ISSN:
- 1434-6044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The direct detection of MeV-scale dark matter (DM) particles hinges on achieving an exceptionally low-energy detection threshold. Germanium (Ge) detectors, meticulously tailored with precise impurity compositions, hold the potential to enhance sensitivity to energy levels below the sub-electronvolt (sub-eV) range. This study explores the behavior of residual impurities inherent to Ge detectors at helium temperatures, unveiling a captivating freeze-out phenomenon leading to the formation of excited localized states known as dipole states. Using compelling evidence from relative capacitance measurements obtained from two detectors, we elucidate the transition of impurity atoms from free charge states to these dipole states as the temperature drops from 11 to 6.5 K. Our investigation comprehensively covers the intricate formation of these dipole states in bothn-type andp-type impurities. Furthermore, we shed light on the electric field generated by these dipole states, revealing their ability to trap charges and facilitate the creation of cluster dipole states. Confirming findings from previous measurements, we establish that these excited dipole states exhibit a binding energy of less than 10 meV, offering an exceptionally low detection threshold for MeV-scale DM. Building upon this concept, we propose the development of a 1-kg Ge detector with internal charge amplification—an innovative approach poised to surpass electrical noise and enable the detection of MeV-scale DM with unprecedented sensitivity.more » « less
- 
            Abstract The detection of low-energy deposition in the range of sub-eV through ionization using germanium (Ge) with a bandgap of $$\sim $$ ∼ 0.7 eV requires internal amplification of the charge signal. This can be achieved through high electric field that accelerates charge carriers, which can then generate more charge carriers. The minimum electric field required to generate internal charge amplification is derived for different temperatures. We report the development of a planar point contact Ge detector in terms of its fabrication and the measurements of its leakage current and capacitance as a function of applied bias voltage. With the determination of the measured depletion voltage, the field distribution is calculated using GeFiCa, which predicts that the required electric field for internal charge amplification can be achieved in proximity to the point contact. The energy response to an Am-241 source is characterized and discussed. We conclude that such a detector with internal charge amplification can be used to search for low-mass dark matter.more » « less
- 
            Charge trapping degrades the energy resolution of germanium (Ge) detectors, which require to have increased experimental sensitivity in searching for dark matter and neutrinoless double-beta decay. We investigate the charge trapping processes utilizing nine planar detectors fabricated from USD-grown crystals with well-known net impurity levels. The charge collection efficiency as a function of charge trapping length is derived from the Shockley-Ramo theorem. Furthermore, we develop a model that correlates the energy resolution with the charge collection efficiency. This model is then applied to the experimental data. As a result, charge collection efficiency and charge trapping length are determined accordingly. Utilizing the Lax model (further developed by CDMS collaborators), the absolute impurity levels are determined for nine detectors. The knowledge of these parameters when combined with other traits such as the Fano factor serve as a reliable indicator of the intrinsic nature of charge trapping within the crystals. We demonstrate that electron trapping is more severe than hole trapping in a p-type detector and the charge collection efficiency depends on the absolute impurity level of the Ge crystal when an adequate bias voltage is applied to the detector. Negligible charge trapping is found when the absolute impurity level is less than 1.0$$\times$$10$^11/3$ for collecting electrons and 2.0$$\times$$10$^11/3$ for collecting holes.more » « less
- 
            Measurements of the dark conductivity and thermoelectric power in hydrogenated amorphous silicon–germanium alloys (a-Si 1- x Ge x :H) reveal that charge transport is not well described by an Arrhenius expression. For alloys with concentrations of Ge below 20%, anomalous hopping conductivity is observed with a power-law exponent of 3/4, while the temperature dependence of the conductivity of alloys with higher Ge concentrations is best fit by a combination of anomalous hopping and a power-law temperature dependence. The latter has been attributed to charge transport via multi-phonon hopping. Corresponding measurements of the Seebeck coefficient reveal that the thermopower is n-type for the purely a-Si:H and a-Ge:H samples but that it exhibits a transition from negative to positive values as a function of the Ge content and temperature. These findings are interpreted in terms of conduction via hopping through either exponential band tail states or dangling bond defects, suggesting that the concept of a mobility edge, accepted for over five decades, may not be necessary to account for charge transport in amorphous semiconductors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    