skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convex Union Representability and Convex Codes
Abstract We introduce and investigate $$d$$-convex union representable complexes: the simplicial complexes that arise as the nerve of a finite collection of convex open sets in $${\mathbb{R}}^d$$ whose union is also convex. Chen, Frick, and Shiu recently proved that such complexes are collapsible and asked if all collapsible complexes are convex union representable. We disprove this by showing that there exist shellable and collapsible complexes that are not convex union representable; there also exist non-evasive complexes that are not convex union representable. In the process we establish several necessary conditions for a complex to be convex union representable such as that such a complex $$\Delta $$ collapses onto the star of any face of $$\Delta $$, that the Alexander dual of $$\Delta $$ must also be collapsible, and that if $$k$$ facets of $$\Delta $$ contain all free faces of $$\Delta $$, then $$\Delta $$ is $(k-1)$-representable. We also discuss some sufficient conditions for a complex to be convex union representable. The notion of convex union representability is intimately related to the study of convex neural codes. In particular, our results provide new families of examples of non-convex neural codes.  more » « less
Award ID(s):
1664865
PAR ID:
10281750
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2021
Issue:
9
ISSN:
1073-7928
Page Range / eLocation ID:
7132 to 7158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A conjecture of Kalai asserts that for $$d\geq 4$$, the affine type of a prime simplicial $$d$$-polytope $$P$$ can be reconstructed from the space of affine $$2$$-stresses of $$P$$. We prove this conjecture for all $$d\geq 5$$. We also prove the following generalization: for all pairs $(i,d)$ with $$2\leq i\leq \lceil \frac d 2\rceil -1$$, the affine type of a simplicial $$d$$-polytope $$P$$ that has no missing faces of dimension $$\geq d-i+1$$ can be reconstructed from the space of affine $$i$$-stresses of $$P$$. A consequence of our proofs is a strengthening of the Generalized Lower Bound Theorem: it was proved by Nagel that for any simplicial $(d-1)$-sphere $$\Delta $$ and $$1\leq k\leq \lceil \frac {d}{2}\rceil -1$$, $$g_{k}(\Delta )$$ is at least as large as the number of missing $(d-k)$-faces of $$\Delta $$; here we show that, for $$1\leq k\leq \lfloor \frac {d}{2}\rfloor -1$$, equality holds if and only if $$\Delta $$ is $$k$$-stacked. Finally, we show that for $$d\geq 4$$, any simplicial $$d$$-polytope $$P$$ that has no missing faces of dimension $$\geq d-1$$ is redundantly rigid, that is, for each edge $$e$$ of $$P$$, there exists an affine $$2$$-stress on $$P$$ with a non-zero value on $$e$$. 
    more » « less
  2. Abstract Using the concepts of mixed volumes and quermassintegrals of convex geometry, we derive an exact formula for the exclusion volume v ex ( K ) for a general convex body K that applies in any space dimension. While our main interests concern the rotationally-averaged exclusion volume of a convex body with respect to another convex body, we also describe some results for the exclusion volumes for convex bodies with the same orientation. We show that the sphere minimizes the dimensionless exclusion volume v ex ( K )/ v ( K ) among all convex bodies, whether randomly oriented or uniformly oriented, for any d , where v ( K ) is the volume of K . When the bodies have the same orientation, the simplex maximizes the dimensionless exclusion volume for any d with a large- d asymptotic scaling behavior of 2 2 d / d 3/2 , which is to be contrasted with the corresponding scaling of 2 d for the sphere. We present explicit formulas for quermassintegrals W 0 ( K ), …, W d ( K ) for many different nonspherical convex bodies, including cubes, parallelepipeds, regular simplices, cross-polytopes, cylinders, spherocylinders, ellipsoids as well as lower-dimensional bodies, such as hyperplates and line segments. These results are utilized to determine the rotationally-averaged exclusion volume v ex ( K ) for these convex-body shapes for dimensions 2 through 12. While the sphere is the shape possessing the minimal dimensionless exclusion volume, we show that, among the convex bodies considered that are sufficiently compact, the simplex possesses the maximal v ex ( K )/ v ( K ) with a scaling behavior of 2 1.6618… d . Subsequently, we apply these results to determine the corresponding second virial coefficient B 2 ( K ) of the aforementioned hard hyperparticles. Our results are also applied to compute estimates of the continuum percolation threshold η c derived previously by the authors for systems of identical overlapping convex bodies. We conjecture that overlapping spheres possess the maximal value of η c among all identical nonzero-volume convex overlapping bodies for d ⩾ 2, randomly or uniformly oriented, and that, among all identical, oriented nonzero-volume convex bodies, overlapping simplices have the minimal value of η c for d ⩾ 2. 
    more » « less
  3. We show that any memory-constrained, first-order algorithm which minimizes d-dimensional, 1-Lipschitz convex functions over the unit ball to 1/poly(d) accuracy using at most $$d^{1.25-\delta}$$ bits of memory must make at least $$\tilde{Omega}(d^{1+(4/3)\delta})$$ first-order queries (for any constant $$\delta in [0,1/4]$$). Consequently, the performance of such memory-constrained algorithms are a polynomial factor worse than the optimal $$\tilde{O}(d)$$ query bound for this problem obtained by cutting plane methods that use $$\tilde{O}(d^2)$$ memory. This resolves a COLT 2019 open problem of Woodworth and Srebro. 
    more » « less
  4. We show that any memory-constrained, first-order algorithm which minimizes d-dimensional, 1-Lipschitz convex functions over the unit ball to 1/ poly(d) accuracy using at most d^(1.25-delta) bits of memory must make at least d^(1+ 4 delta / 3) first-order queries (for any constant delta in (0,1/4). Consequently, the performance of such memory-constrained algorithms are a polynomial factor worse than the optimal O(d polylog d) query bound for this problem obtained by cutting plane methods that use >d^2 memory. This resolves one of the open problems in the COLT 2019 open problem publication of Woodworth and Srebro. 
    more » « less
  5. null (Ed.)
    We investigate the approximability of the following optimization problem. The input is an n× n matrix A=(Aij) with real entries and an origin-symmetric convex body K⊂ ℝn that is given by a membership oracle. The task is to compute (or approximate) the maximum of the quadratic form ∑i=1n∑j=1n Aij xixj=⟨ x,Ax⟩ as x ranges over K. This is a rich and expressive family of optimization problems; for different choices of matrices A and convex bodies K it includes a diverse range of optimization problems like max-cut, Grothendieck/non-commutative Grothendieck inequalities, small set expansion and more. While the literature studied these special cases using case-specific reasoning, here we develop a general methodology for treatment of the approximability and inapproximability aspects of these questions. The underlying geometry of K plays a critical role; we show under commonly used complexity assumptions that polytime constant-approximability necessitates that K has type-2 constant that grows slowly with n. However, we show that even when the type-2 constant is bounded, this problem sometimes exhibits strong hardness of approximation. Thus, even within the realm of type-2 bodies, the approximability landscape is nuanced and subtle. However, the link that we establish between optimization and geometry of Banach spaces allows us to devise a generic algorithmic approach to the above problem. We associate to each convex body a new (higher dimensional) auxiliary set that is not convex, but is approximately convex when K has a bounded type-2 constant. If our auxiliary set has an approximate separation oracle, then we design an approximation algorithm for the original quadratic optimization problem, using an approximate version of the ellipsoid method. Even though our hardness result implies that such an oracle does not exist in general, this new question can be solved in specific cases of interest by implementing a range of classical tools from functional analysis, most notably the deep factorization theory of linear operators. Beyond encompassing the scenarios in the literature for which constant-factor approximation algorithms were found, our generic framework implies that that for convex sets with bounded type-2 constant, constant factor approximability is preserved under the following basic operations: (a) Subspaces, (b) Quotients, (c) Minkowski Sums, (d) Complex Interpolation. This yields a rich family of new examples where constant factor approximations are possible, which were beyond the reach of previous methods. We also show (under commonly used complexity assumptions) that for symmetric norms and unitarily invariant matrix norms the type-2 constant nearly characterizes the approximability of quadratic maximization. 
    more » « less