skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1664865

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    Abstract We introduce and investigate $$d$$-convex union representable complexes: the simplicial complexes that arise as the nerve of a finite collection of convex open sets in $${\mathbb{R}}^d$$ whose union is also convex. Chen, Frick, and Shiu recently proved that such complexes are collapsible and asked if all collapsible complexes are convex union representable. We disprove this by showing that there exist shellable and collapsible complexes that are not convex union representable; there also exist non-evasive complexes that are not convex union representable. In the process we establish several necessary conditions for a complex to be convex union representable such as that such a complex $$\Delta $$ collapses onto the star of any face of $$\Delta $$, that the Alexander dual of $$\Delta $$ must also be collapsible, and that if $$k$$ facets of $$\Delta $$ contain all free faces of $$\Delta $$, then $$\Delta $$ is $(k-1)$-representable. We also discuss some sufficient conditions for a complex to be convex union representable. The notion of convex union representability is intimately related to the study of convex neural codes. In particular, our results provide new families of examples of non-convex neural codes. 
    more » « less