skip to main content


Title: A temperature-sensitive FERONIA mutant allele that alters root hair growth
Abstract In plants, root hairs undergo a highly polarized form of cell expansion called tip-growth, in which cell wall deposition is restricted to the root hair apex. In order to identify essential cellular components that might have been missed in earlier genetic screens, we identified conditional temperature-sensitive (ts) root hair mutants by ethyl methanesulfonate mutagenesis in Arabidopsis thaliana. Here, we describe one of these mutants, feronia-temperature sensitive (fer-ts). Mutant fer-ts seedlings were unaffected at normal temperatures (20°C), but failed to form root hairs at elevated temperatures (30°C). Map based-cloning and whole-genome sequencing revealed that fer-ts resulted from a G41S substitution in the extracellular domain of FERONIA (FER). A functional fluorescent fusion of FER containing the fer-ts mutation localized to plasma membranes, but was subject to enhanced protein turnover at elevated temperatures. While tip-growth was rapidly inhibited by addition of rapid alkalinization factor 1 (RALF1) peptides in both wild-type and fer-ts mutants at normal temperatures, root elongation of fer-ts seedlings was resistant to added RALF1 peptide at elevated temperatures. Additionally, at elevated temperatures fer-ts seedlings displayed altered reactive oxygen species (ROS) accumulation upon auxin treatment and phenocopied constitutive fer mutant responses to a variety of plant hormone treatments. Molecular modeling and sequence comparison with other Catharanthus roseus receptor-like kinase 1L (CrRLK1L) receptor family members revealed that the mutated glycine in fer-ts is highly conserved, but is not located within the recently characterized RALF23 and LORELI-LIKE-GLYCOPROTEIN 2 binding domains, perhaps suggesting that fer-ts phenotypes may not be directly due to loss of binding to RALF1 peptides.  more » « less
Award ID(s):
1817697 1816875
NSF-PAR ID:
10281774
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Plant Physiology
Volume:
185
Issue:
2
ISSN:
0032-0889
Page Range / eLocation ID:
405 to 423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Root hair initiation is a highly regulated aspect of root development. The plant hormone ethylene and its precursor, 1-amino-cyclopropane-1-carboxylic acid, induce formation and elongation of root hairs. Using confocal microscopy paired with redox biosensors and dyes, we demonstrated that treatments that elevate ethylene levels lead to increased hydrogen peroxide accumulation in hair cells prior to root hair formation. In the ethylene-insensitive receptor mutant, etr1-3, and the signaling double mutant, ein3eil1, the increase in root hair number or reactive oxygen species (ROS) accumulation after ACC and ethylene treatment was lost. Conversely, etr1-7, a constitutive ethylene signaling receptor mutant, has increased root hair formation and ROS accumulation, similar to ethylene-treated Col-0 seedlings. The caprice and werewolf transcription factor mutants have decreased and elevated ROS levels, respectively, which are correlated with levels of root hair initiation. The rhd2-6 mutant, with a defect in the gene encoding the ROS-synthesizing RESPIRATORY BURST OXIDASE HOMOLOG C (RBOHC), and the prx44-2 mutant, which is defective in a class III peroxidase, showed impaired ethylene-dependent ROS synthesis and root hair formation via EIN3EIL1-dependent transcriptional regulation. Together, these results indicate that ethylene increases ROS accumulation through RBOHC and PRX44 to drive root hair formation. 
    more » « less
  2. Introduction

    VPS45 belongs to the Sec1/Munc18 family of proteins, which interact with and regulate Qa-SNARE function during membrane fusion. We have shown previously thatArabidopsis thalianaVPS45 interacts with the SYP61/SYP41/VTI12 SNARE complex, which locates on thetrans-Golgi network (TGN). It is required for SYP41 stability, and it functions in cargo trafficking to the vacuole and in cell expansion. It is also required for correct auxin distribution during gravitropism and lateral root growth.

    Results

    Asvps45knockout mutation is lethal in Arabidopsis, we identified a mutant,vps45-3, with a point mutation in theVPS45gene causing a serine 284-to-phenylalanine substitution. The VPS45-3 protein is stable and maintains interaction with SYP61 and SYP41. However,vps45-3plants display severe growth defects with significantly reduced organ and cell size, similar tovps45RNAi transgenic lines that have reduced VPS45 protein levels. Root hair and pollen tube elongation, both processes of tip growth, are highly compromised invps45-3. Mutant root hairs are shorter and thicker than those of wild-type plants, and are wavy. These root hairs have vacuolar defects, containing many small vacuoles, compared with WT root hairs with a single large vacuole occupying much of the cell volume. Pollen tubes were also significantly shorter invps45-3compared to WT.

    Discussion

    We thus show that VPS45 is essential for proper tip growth and propose that the observed vacuolar defects lead to loss of the turgor pressure needed for tip growth.

     
    more » « less
  3. Abstract Background

    H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci inArabidopsis thalianafemale gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction.

    Results

    H2A.X is encoded by two genes in Arabidopsis genome,HTA3andHTA5. We generatedh2a.xdouble mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However,h2a.xmutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under theH2A.Xpromoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation inh2a.xdeveloping seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide inh2a.xmutant endosperm. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling.h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA.

    Conclusions

    Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.

     
    more » « less
  4. ABSTRACT Symbiotic nitrogen fixation (SNF) in the interaction between the soil bacteria Sinorhizobium meliloti and legume plant Medicago sativa is carried out in specialized root organs called nodules. During nodule development, each symbiont must drastically alter their proteins, transcripts, and metabolites in order to support nitrogen fixation. Moreover, bacteria within the nodules are under stress, including challenges by plant antimicrobial peptides, low pH, limited oxygen availability, and strongly reducing conditions, all of which challenge proteome integrity. S. meliloti stress adaptation, proteome remodeling, and quality control are controlled in part by the large oligomeric protease complexes HslUV and ClpXP1. To improve understanding of the roles of S. meliloti HslUV and ClpXP1 under free-living conditions and in symbiosis with M. sativa , we generated Δ hslU , Δ hslV , Δ hslUV , and Δ clpP1 knockout mutants. The shoot dry weight of M. sativa plants inoculated with each deletion mutant was significantly reduced, suggesting a role in symbiosis. Further, slower free-living growth of the Δ hslUV and Δ clpP1 mutants suggests that HslUV and ClpP1 were involved in adapting to heat stress, the while Δ hslU and Δ clpP1 mutants were sensitive to kanamycin. All deletion mutants produced less exopolysaccharide and succinoglycan, as shown by replicate spot plating and calcofluor binding. We also generated endogenous C-terminal enhanced green fluorescent protein (eGFP) fusions to HslU, HslV, ClpX, and ClpP1 in S. meliloti . Using anti-eGFP antibodies, native coimmunoprecipitation experiments with proteins from free-living and nodule tissues were performed and analyzed by mass spectrometry. The results suggest that HslUV and ClpXP were closely associated with ribosomal and proteome quality control proteins, and they identified several novel putative protein-protein interactions. IMPORTANCE Symbiotic nitrogen fixation (SNF) is the primary means by which biologically available nitrogen enters the biosphere, and it is therefore a critical component of the global nitrogen cycle and modern agriculture. SNF is the result of highly coordinated interactions between legume plants and soil bacteria collectively referred to as rhizobia, e.g., Medicago sativa and S. meliloti , respectively. Accomplishing SNF requires significant proteome changes in both organisms to create a microaerobic environment suitable for high-level bacterial nitrogenase activity. The bacterial protease systems HslUV and ClpXP are important in proteome quality control, in metabolic remodeling, and in adapting to stress. This work shows that S. meliloti HslUV and ClpXP are involved in SNF, in exopolysaccharide production, and in free-living stress adaptation. 
    more » « less
  5. The Arabidopsis receptor kinase FERONIA (FER) is a multifunctional regulator for plant growth and reproduction. Here we report that the female gametophyte-expressed glycosylphosphatidylinositol-anchored protein (GPI-AP) LORELEI and the seedling-expressed LRE-like GPI-AP1 (LLG1) bind to the extracellular juxtamembrane region of FER and show that this interaction is pivotal for FER function. LLG1 interacts with FER in the endoplasmic reticulum and on the cell surface, and loss of LLG1 function induces cytoplasmic retention of FER, consistent with transport of FER from the endoplasmic reticulum to the plasma membrane in a complex with LLG1. We further demonstrate that LLG1 is a component of the FER-regulated RHO GTPase signaling complex and that fer and llg1 mutants display indistinguishable growth, developmental and signaling phenotypes, analogous to how lre and fer share similar reproductive defects. Together our results support LLG1/LRE acting as a chaperone and co-receptor for FER and elucidate a mechanism by which GPI-APs enable the signaling capacity of a cell surface receptor.

     
    more » « less