skip to main content


Title: Spin-Filtered Tunneling Device Using a Topological Insulator
There has been much interest in the study of topological insulators (TI) recently. Due to their unique electronic structure, these new materials have been an active area of research to discover new quantum phenomena and their application in new technologies. Unlike the electronic structure observed in traditional semiconductors, the strong spin-orbit coupling induces a band inversion in the electronic structure of TIs. One of the side effects of this band inversion is creating metallic-like surface states at the material's surface that are protected by time invariance and whose spin angular momentum is locked to the direction of the momentum of the electron. These surface states are essentially resistant to scattering events that otherwise affect other materials. Leveraging the characteristic scattering resistance, the spin-momentum locking of the surface states, and the Dirac cone structure, a spin-resonant tunneling diode using topological insulators has been investigated to implement a negative differential resistance device. Utilizing the spin texture of the surface states, an additional spin-filter can help to suppress the valley current in a negative differential resistance device. In the spin-resonant tunneling diode, the tunneling process would also benefit from having protection from conventional scattering processes due to defects and thickness or line edge roughness. This research is focused on the manufacturing of a spin-filtered tunnel diode. Using molecular beam epitaxy to grow a three-layer heterostructure, with two layers of bismuth selenide as the topological insulator separated by a thin layer of tungsten diselenide as a tunnel barrier. The alignment of the Fermi levels of the topological insulator layers and the thickness of the tunnel barrier were investigated using X-ray Photoelectron Spectroscopy. The fabrication and initial electrical measurements of the spin-filtered tunnel diode were also investigated.  more » « less
Award ID(s):
1917025
NSF-PAR ID:
10281809
Author(s) / Creator(s):
Date Published:
Journal Name:
Masters Thesis of Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Downscaling device dimensions to the nanometer range raises significant challenges to traditional device design, due to potential current leakage across nanoscale dimensions and the need to maintain reproducibility while dealing with atomic‐scale components. Here, negative differential resistance (NDR) devices based on atomically precise graphene nanoribbons are investigated. The computational evaluation of the traditional double‐barrier resonant‐tunneling diode NDR structure uncovers important issues at the atomic scale, concerning the need to minimize the tunneling current between the leads while achieving high peak current. A new device structure consisting of multiple short segments that enables high current by the alignment of electronic levels across the segments while enlarging the tunneling distance between the leads is proposed. The proposed structure can be built with atomic precision using a scanning tunneling microscope (STM) tip during an intermediate stage in the synthesis of an armchair nanoribbon. An experimental evaluation of the band alignment at the interfaces and an STM image of the fabricated active part of the device are also presented. This combined theoretical–experimental approach opens a new avenue for the design of nanoscale devices with atomic precision.

     
    more » « less
  2. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less
  3. Topological insulators open many avenues for designing future electronic devices. Using the Bardeen transfer Hamiltonian method, we calculate the current density of electron tunneling between two slabs of Bi2Se3. 3D TI tunnel diode current-voltage characteristics are calculated for different doping concentrations, tunnel barrier height and thickness, and 3D TI bandgap. The difference in the Fermi levels of the slabs determines the peak and trough voltages. The tunnel barrier width and height affect the magnitude of the current without affecting the shape of the current-voltage characteristics. The bandgap of the 3D TI determines the magnitude of the tunnel current, albeit at a lesser rate than the tunnel barrier potential, thus the device characteristics are robust under changing TI material. The high peak-to-trough ratio of 3D TI tunnel diodes, the controllabilty of the trough current location, and the simple construction provide advantages over other NDR devices. 
    more » « less
  4. Abstract

    This work reports important fundamental advancements in multiwall carbon nanotube (MWCNT) rectenna devices by creating and optimizing new diode structures to allow optical rectification with air‐stable devices. The incorporation of double‐insulator layer tunnel diodes, fabricated for the first time on MWCNT arrays, enables the use of air‐stable top metals (Al and Ag) with excellent asymmetry for rectification applications. Asymmetry is increased by as much as 10 times, demonstrating the effectiveness of incorporating multiple dielectric layers to control electron tunneling in MWCNT diode structures. MWCNT tip opening also reduces device resistance up to 75% due to an increase in diode contact area to MWCNT inner walls. This effect is consistent for different oxide materials and thicknesses. A number of insulator layers, including Al2O3, HfO2, TiO2, ZnO, and ZrO2, in both single‐ and then double‐insulator configurations are tested. Resistance increases exponentially with insulator thickness and decreases with electron affinity. These results are used to characterize double‐insulator diode performance. Finally, for the most asymmetric device structure, Al2O3‐HfO2(4/4 nm), optical rectification at a frequency of 470 THz (638 nm) is demonstrated. These results open the door for designing efficient MWCNT rectenna devices with more material flexibility, including air‐stable, transparent, and conductive top electrode materials.

     
    more » « less
  5. The past decade has witnessed the emergence of a new frontier in condensed matter physics: topological materials with an electronic band structure belonging to a different topological class from that of ordinary insulators and metals. This non-trivial band topology gives rise to robust, spin-polarized electronic states with linear energy–momentum dispersion at the edge or surface of the materials. For topological materials to be useful in electronic devices, precise control and accurate detection of the topological states must be achieved in nanostructures, which can enhance the topological states because of their large surface-to-volume ratios. In this Review, we discuss notable synthesis and electron transport results of topological nanomaterials, from topological insulator nanoribbons and plates to topological crystalline insulator nanowires and Weyl and Dirac semimetal nanobelts. We also survey superconductivity in topological nanowires, a nanostructure platform that might enable the controlled creation of Majorana bound states for robust quantum computations. Two material systems that can host Majorana bound states are compared: spin–orbit coupled semiconducting nanowires and topological insulating nanowires, a focus of this Review. Finally, we consider the materials and measurement challenges that must be overcome before topological nanomaterials can be used in next-generation electronic devices. 
    more » « less