Abstract Magnetic tunnel junctions (MTJs), that consist of two ferromagnetic electrodes separated by an insulating barrier layer, have non-trivial fundamental properties associated with spin-dependent tunneling. Especially interesting are fully crystalline MTJs where spin-dependent tunneling is controlled by the symmetry group of wave vector. In this work, using first-principles quantum-transport calculations, we explore spin-dependent tunneling in fully crystalline SrRuO3/SrTiO3/SrRuO3(001) MTJs and predict tunneling magnetoresistance (TMR) of nearly 3000%. We demonstrate that this giant TMR effect is driven by symmetry matching (mismatching) of the incoming and outcoming Bloch states in the SrRuO3(001) electrodes and evanescent states in the SrTiO3(001) barrier. We argue that under the conditions of symmetry-controlled transport, spin polarization, whatever definition is used, is not a relevant measure of spin-dependent tunneling. In the presence of diffuse scattering, however, e.g. due to localized states in the band gap of the tunnel barrier, symmetry matching is no longer valid and TMR in SrRuO3/SrTiO3/SrRuO3(001) MTJs is strongly reduced. Under these conditions, the spin polarization of the interface transmission function becomes a valid measure of TMR. These results provide an important insight into understanding and optimizing TMR in all-oxide MTJs. 
                        more » 
                        « less   
                    This content will become publicly available on February 26, 2026
                            
                            Spin Filtering with Insulating Altermagnets
                        
                    
    
            Altermagnetic (AM) materials have recently attracted significant interest due to their non-relativistic momentum-dependent spin splitting of their electronic band structure which may be useful for antiferromagnetic (AFM) spintronics. So far, however, most research studies have been focused on conducting properties of AM metals and semiconductors, while functional properties of AM insulators have remained largely unexplored. Here, we propose employing AM insulators (AMIs) as efficient spin-filter materials. By analyzing the complex band structure of rutile-type altermagnets MF2 (M = Fe, Co, Ni), we demonstrate that the evanescent states in these AMIs exhibit spin- and momentum-dependent decay rates resulting in momentum-dependent spin polarization of the tunneling current. Using a model of spin-filter tunneling across a spin-dependent potential barrier, we estimate the TMR effect in spin-filter magnetic tunnel junctions (SF-MTJs) that include two magnetically decoupled MF2 (001) barrier layers. We predict a sizable spin-filter TMR ratio of about 150-170% in SF-MTJs based on AMIs CoF2 and NiF2 if the Fermi energy is tuned to be close to the valence band maximum. Our results demonstrate that AMIs provide a viable alternative to conventional spin-filter materials, potentially advancing the development of next-generation AFM spintronic devices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2316665
- PAR ID:
- 10599701
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Nano Letters
- Volume:
- 25
- Issue:
- 8
- ISSN:
- 1530-6984
- Page Range / eLocation ID:
- 3150 to 3156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Magnetic tunnel junctions (MTJs) with conventional bulk ferromagnets separated by a nonmagnetic insulating layer are key building blocks in spintronics for magnetic sensors and memory. A radically different approach of using atomically-thin van der Waals (vdW) materials in MTJs is expected to boost their figure of merit, the tunneling magnetoresistance (TMR), while relaxing the lattice-matching requirements from the epitaxial growth and supporting high-quality integration of dissimilar materials with atomically-sharp interfaces. We report TMR up to 192% at 10 K in all-vdW Fe3GeTe2/GaSe/Fe3GeTe2 MTJs. Remarkably, instead of the usual insulating spacer, this large TMR is realized with a vdW semiconductor GaSe. Integration of semiconductors into the MTJs offers energy-band-tunability, bias dependence, magnetic proximity effects, and spin-dependent optical-selection rules. We demonstrate that not only the magnitude of the TMR is tuned by the semiconductor thickness but also the TMR sign can be reversed by varying the bias voltages, enabling modulation of highly spin-polarized carriers in vdW semiconductors.more » « less
- 
            Abstract Antiferromagnetic (AFM) spintronics has emerged as a subfield of spintronics, where an AFM Néel vector is used as a state variable. Efficient electric control and detection of the Néel vector are critical for spintronic applications. This review article features fundamental properties of AFM tunnel junctions (AFMTJs) as spintronic devices where such electric control and detection can be realized. We emphasize critical requirements for observing a large tunneling magnetoresistance (TMR) effect in AFMTJs with collinear and noncollinear AFM electrodes, such as a momentum-dependent spin polarization and Néel spin currents. We further discuss spin torques in AFMTJs that are capable of Néel vector switching. Overall, AFMTJs have potential to become a new standard for spintronics providing larger magnetoresistive effects, few orders of magnitude faster switching speed, and much higher packing density than conventional magnetic tunnel junctions (MTJs).more » « less
- 
            Abstract Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon‐based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon‐compatible deposition process, and controlling their AFM order required external magnetic fields. Here are shown three‐terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3, sputter‐deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room‐temperature TMR effect. First‐principles calculations explain the TMR in terms of the momentum‐resolved spin‐dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes.more » « less
- 
            null (Ed.)There has been much interest in the study of topological insulators (TI) recently. Due to their unique electronic structure, these new materials have been an active area of research to discover new quantum phenomena and their application in new technologies. Unlike the electronic structure observed in traditional semiconductors, the strong spin-orbit coupling induces a band inversion in the electronic structure of TIs. One of the side effects of this band inversion is creating metallic-like surface states at the material's surface that are protected by time invariance and whose spin angular momentum is locked to the direction of the momentum of the electron. These surface states are essentially resistant to scattering events that otherwise affect other materials. Leveraging the characteristic scattering resistance, the spin-momentum locking of the surface states, and the Dirac cone structure, a spin-resonant tunneling diode using topological insulators has been investigated to implement a negative differential resistance device. Utilizing the spin texture of the surface states, an additional spin-filter can help to suppress the valley current in a negative differential resistance device. In the spin-resonant tunneling diode, the tunneling process would also benefit from having protection from conventional scattering processes due to defects and thickness or line edge roughness. This research is focused on the manufacturing of a spin-filtered tunnel diode. Using molecular beam epitaxy to grow a three-layer heterostructure, with two layers of bismuth selenide as the topological insulator separated by a thin layer of tungsten diselenide as a tunnel barrier. The alignment of the Fermi levels of the topological insulator layers and the thickness of the tunnel barrier were investigated using X-ray Photoelectron Spectroscopy. The fabrication and initial electrical measurements of the spin-filtered tunnel diode were also investigated.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
