skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Consistent Estimation of Identifiable Nonparametric Mixture Models from Grouped Observations
Recent research has established sufficient conditions for finite mixture models to be identifiable from grouped observations. These conditions allow the mixture components to be nonparametric and have substantial (or even total) overlap. This work proposes an algorithm that consistently estimates any identifiable mixture model from grouped observations. Our analysis leverages an oracle inequality for weighted kernel density estimators of the distribution on groups, together with a general result showing that consistent estimation of the distribution on groups implies consistent estimation of mixture components. A practical implementation is provided for paired observations, and the approach is shown to outperform existing methods, especially when mixture components overlap significantly.  more » « less
Award ID(s):
2008074
PAR ID:
10281838
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
34th Conferene on Neural Information Processing Systems (NeurIPS 2020)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent research has established sufficient conditions for finite mixture models to be identifiablefrom grouped observations. These conditions allow the mixture components to be nonparametricand have substantial (or even total) overlap. This work proposes an algorithm that consistentlyestimates any identifiable mixture model from grouped observations. Our analysis leverages anoracle inequality for weighted kernel density estimators of the distribution on groups, togetherwith a general result showing that consistent estimation of the distribution on groups impliesconsistent estimation of mixture components. A practical implementation is provided for pairedobservations, and the approach is shown to outperform existing methods, especially when mixturecomponents overlap significantly. 
    more » « less
  2. We consider nonparametric estimation of a mixed discrete‐continuous distribution under anisotropic smoothness conditions and a possibly increasing number of support points for the discrete part of the distribution. For these settings, we derive lower bounds on the estimation rates. Next, we consider a nonparametric mixture of normals model that uses continuous latent variables for the discrete part of the observations. We show that the posterior in this model contracts at rates that are equal to the derived lower bounds up to a log factor. Thus, Bayesian mixture of normals models can be used for (up to a log factor) optimal adaptive estimation of mixed discrete‐continuous distributions. The proposed model demonstrates excellent performance in simulations mimicking the first stage in the estimation of structural discrete choice models. 
    more » « less
  3. Motivated by problems in data clustering, we establish general conditions under which families of nonparametric mixture models are identifiable, by introducing a novel framework involving clustering overfitted parametric (i.e. misspecified) mixture models. These identifiability conditions generalize existing conditions in the literature, and are flexible enough to include for example mixtures of Gaussian mixtures. In contrast to the recent literature on estimating nonparametric mixtures, we allow for general nonparametric mixture components, and instead impose regularity assumptions on the underlying mixing measure. As our primary application, we apply these results to partition-based clustering, generalizing the notion of a Bayes optimal partition from classical parametric model-based clustering to nonparametric settings. Furthermore, this framework is constructive so that it yields a practical algorithm for learning identified mixtures, which is illustrated through several examples on real data. The key conceptual device in the analysis is the convex, metric geometry of probability measures on metric spaces and its connection to the Wasserstein convergence of mixing measures. The result is a flexible framework for nonparametric clustering with formal consistency guarantees. 
    more » « less
  4. Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang; Sabato, Sivan (Ed.)
    Unsupervised domain adaptation is critical to many real-world applications where label information is unavailable in the target domain. In general, without further assumptions, the joint distribution of the features and the label is not identifiable in the target domain. To address this issue, we rely on a property of minimal changes of causal mechanisms across domains to minimize unnecessary influences of domain shift. To encode this property, we first formulate the data generating process using a latent variable model with two partitioned latent subspaces: invariant components whose distributions stay the same across domains, and sparse changing components that vary across domains. We further constrain the domain shift to have a restrictive influence on the changing components. Under mild conditions, we show that the latent variables are partially identifiable, from which it follows that the joint distribution of data and labels in the target domain is also identifiable. Given the theoretical insights, we propose a practical domain adaptation framework, called iMSDA. Extensive experimental results reveal that iMSDA outperforms state-of-the-art domain adaptation algorithms on benchmark datasets, demonstrating the effectiveness of our framework. 
    more » « less
  5. The task of mixture proportion estimation (MPE) is to estimate the weight of a component distribution in a mixture, given observations from both the component and mixture. Previous work on MPE adopts the irreducibility assumption, which ensures identifiablity of the mixture proportion. In this paper, we propose a more general sufficient condition that accommodates several settings of interest where irreducibility does not hold. We further present a resampling-based meta algorithm that takes any existing MPE algorithm designed to work under irreducibility and adapts it to work under our more general condition. Our approach empirically exhibits improved estimation performance relative to baseline methods and to a recently proposed regrouping-based algorithm. 
    more » « less