null
(Ed.)
Recent research has established sufficient conditions for finite mixture models to be identifiablefrom grouped observations. These conditions allow the mixture components to be nonparametricand have substantial (or even total) overlap. This work proposes an algorithm that consistentlyestimates any identifiable mixture model from grouped observations. Our analysis leverages anoracle inequality for weighted kernel density estimators of the distribution on groups, togetherwith a general result showing that consistent estimation of the distribution on groups impliesconsistent estimation of mixture components. A practical implementation is provided for pairedobservations, and the approach is shown to outperform existing methods, especially when mixturecomponents overlap significantly.
more »
« less
An official website of the United States government

