skip to main content

Title: Partial disentanglement for domain adaptation
Unsupervised domain adaptation is critical to many real-world applications where label information is unavailable in the target domain. In general, without further assumptions, the joint distribution of the features and the label is not identifiable in the target domain. To address this issue, we rely on a property of minimal changes of causal mechanisms across domains to minimize unnecessary influences of domain shift. To encode this property, we first formulate the data generating process using a latent variable model with two partitioned latent subspaces: invariant components whose distributions stay the same across domains, and sparse changing components that vary across domains. We further constrain the domain shift to have a restrictive influence on the changing components. Under mild conditions, we show that the latent variables are partially identifiable, from which it follows that the joint distribution of data and labels in the target domain is also identifiable. Given the theoretical insights, we propose a practical domain adaptation framework, called iMSDA. Extensive experimental results reveal that iMSDA outperforms state-of-the-art domain adaptation algorithms on benchmark datasets, demonstrating the effectiveness of our framework.
; ; ; ; ; ; ;
Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang; Sabato, Sivan
Award ID(s):
Publication Date:
Journal Name:
Proceedings of Machine Learning Research
Page Range or eLocation-ID:
11455 - 11472
Sponsoring Org:
National Science Foundation
More Like this
  1. A key problem in domain adaptation is determining what to transfer across different domains. We propose a data-driven method to represent these changes across multiple source domains and perform unsupervised domain adaptation. We assume that the joint distributions follow a specific generating process and have a small number of identifiable changing parameters, and develop a data-driven method to identify the changing parameters by learning low-dimensional representations of the changing class-conditional distributions across multiple source domains. The learned low-dimensional representations enable us to reconstruct the target-domain joint distribution from unlabeled target-domain data, and further enable predicting the labels in the target domain. We demonstrate the efficacy of this method by conducting experiments on synthetic and real datasets.
  2. Domain adaptation aims to correct the classifiers when faced with distribution shift between source (training) and target (test) domains. State-of-the-art domain adaptation methods make use of deep networks to extract domain-invariant representations. However, existing methods assume that all the instances in the source domain are correctly labeled; while in reality, it is unsurprising that we may obtain a source domain with noisy labels. In this paper, we are the first to comprehensively investigate how label noise could adversely affect existing domain adaptation methods in various scenarios. Further, we theoretically prove that there exists a method that can essentially reduce the side-effect of noisy source labels in domain adaptation. Specifically, focusing on the generalized target shift scenario, where both label distribution 𝑃𝑌 and the class-conditional distribution 𝑃𝑋|𝑌 can change, we discover that the denoising Conditional Invariant Component (DCIC) framework can provably ensures (1) extracting invariant representations given examples with noisy labels in the source domain and unlabeled examples in the target domain and (2) estimating the label distribution in the target domain with no bias. Experimental results on both synthetic and real-world data verify the effectiveness of the proposed method.
  3. Domain adaptation techniques using deep neural networks have been mainly used to solve the distribution shift problem in homogeneous domains where data usually share similar feature spaces and have the same dimensionalities. Nevertheless, real world applications often deal with heterogeneous domains that come from completely different feature spaces with different dimensionalities. In our remote sensing application, two remote sensing datasets collected by an active sensor and a passive one are heterogeneous. In particular, CALIOP actively measures each atmospheric column. In this study, 25 measured variables/features that are sensitive to cloud phase are used and they are fully labeled. VIIRS is an imaging radiometer, which collects radiometric measurements of the surface and atmosphere in the visible and infrared bands. Recent studies have shown that passive sensors may have difficulties in prediction cloud/aerosol types in complicated atmospheres (e.g., overlapping cloud and aerosol layers, cloud over snow/ice surface, etc.). To overcome the challenge of the cloud property retrieval in passive sensor, we develop a novel VAE based approach to learn domain invariant representation that capture the spatial pattern from multiple satellite remote sensing data (VDAM), to build a domain invariant cloud property retrieval method to accurately classify different cloud types (labels) in themore »passive sensing dataset. We further exploit the weight based alignment method on the label space to learn a powerful domain adaptation technique that is pertinent to the remote sensing application. Experiments demonstrate our method outperforms other state-of-the-art machine learning methods and achieves higher accuracy in cloud property retrieval in the passive satellite dataset.« less
  4. Due to the ability of deep neural nets to learn rich representations, recent advances in unsupervised domain adaptation have focused on learning domain-invariant features that achieve a small error on the source domain. The hope is that the learnt representation, together with the hypothesis learnt from the source domain, can generalize to the target domain. In this paper, we first construct a simple counterexample showing that, contrary to common belief, the above conditions are not sufficient to guarantee successful domain adaptation. In particular, the counterexample exhibits conditional shift: the class-conditional distributions of input features change between source and target domains. To give a sufficient condition for domain adaptation, we propose a natural and interpretable generalization upper bound that explicitly takes into account the aforementioned shift.Moreover, we shed new light on the problem by proving an information-theoretic lower bound on the joint error of any domain adaptation method that attempts to learn invariant representations.Our result characterizes a fundamental tradeoff between learning invariant representations and achieving small joint error on both domains when the marginal label distributions differ from source to target. Finally, we conduct experiments on real-world datasets that corroborate our theoretical findings. We believe these insights are helpful in guidingmore »the future design of domain adaptation and representation learning algorithms.« less
  5. Adversarial learning has demonstrated good performance in the unsupervised domain adaptation setting, by learning domain-invariant representations. However, recent work has shown limitations of this approach when label distributions differ between the source and target domains. In this paper, we propose a new assumption, generalized label shift (GLS), to improve robustness against mismatched label distributions. GLS states that, conditioned on the label, there exists a representation of the input that is invariant between the source and target domains. Under GLS, we provide theoretical guarantees on the transfer performance of any classifier. We also devise necessary and sufficient conditions for GLS to hold, by using an estimation of the relative class weights between domains and an appropriate reweighting of samples. Our weight estimation method could be straightforwardly and generically applied in existing domain adaptation (DA) algorithms that learn domain-invariant representations, with small computational overhead. In particular, we modify three DA algorithms, JAN, DANN and CDAN, and evaluate their performance on standard and artificial DA tasks. Our algorithms outperform the base versions, with vast improvements for large label distribution mismatches. Our code is available at