A key problem in domain adaptation is determining what to transfer across different domains. We propose a data-driven method to represent these changes across multiple source domains and perform unsupervised domain adaptation. We assume that the joint distributions follow a specific generating process and have a small number of identifiable changing parameters, and develop a data-driven method to identify the changing parameters by learning low-dimensional representations of the changing class-conditional distributions across multiple source domains. The learned low-dimensional representations enable us to reconstruct the target-domain joint distribution from unlabeled target-domain data, and further enable predicting the labels in the target domain. We demonstrate the efficacy of this method by conducting experiments on synthetic and real datasets. 
                        more » 
                        « less   
                    
                            
                            Partial disentanglement for domain adaptation
                        
                    
    
            Unsupervised domain adaptation is critical to many real-world applications where label information is unavailable in the target domain. In general, without further assumptions, the joint distribution of the features and the label is not identifiable in the target domain. To address this issue, we rely on a property of minimal changes of causal mechanisms across domains to minimize unnecessary influences of domain shift. To encode this property, we first formulate the data generating process using a latent variable model with two partitioned latent subspaces: invariant components whose distributions stay the same across domains, and sparse changing components that vary across domains. We further constrain the domain shift to have a restrictive influence on the changing components. Under mild conditions, we show that the latent variables are partially identifiable, from which it follows that the joint distribution of data and labels in the target domain is also identifiable. Given the theoretical insights, we propose a practical domain adaptation framework, called iMSDA. Extensive experimental results reveal that iMSDA outperforms state-of-the-art domain adaptation algorithms on benchmark datasets, demonstrating the effectiveness of our framework. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2134901
- PAR ID:
- 10380974
- Editor(s):
- Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang; Sabato, Sivan
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 162
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 11455 - 11472
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Domain adaptation aims to correct the classifiers when faced with distribution shift between source (training) and target (test) domains. State-of-the-art domain adaptation methods make use of deep networks to extract domain-invariant representations. However, existing methods assume that all the instances in the source domain are correctly labeled; while in reality, it is unsurprising that we may obtain a source domain with noisy labels. In this paper, we are the first to comprehensively investigate how label noise could adversely affect existing domain adaptation methods in various scenarios. Further, we theoretically prove that there exists a method that can essentially reduce the side-effect of noisy source labels in domain adaptation. Specifically, focusing on the generalized target shift scenario, where both label distribution 𝑃𝑌 and the class-conditional distribution 𝑃𝑋|𝑌 can change, we discover that the denoising Conditional Invariant Component (DCIC) framework can provably ensures (1) extracting invariant representations given examples with noisy labels in the source domain and unlabeled examples in the target domain and (2) estimating the label distribution in the target domain with no bias. Experimental results on both synthetic and real-world data verify the effectiveness of the proposed method.more » « less
- 
            Due to the ability of deep neural nets to learn rich representations, recent advances in unsupervised domain adaptation have focused on learning domain-invariant features that achieve a small error on the source domain. The hope is that the learnt representation, together with the hypothesis learnt from the source domain, can generalize to the target domain. In this paper, we first construct a simple counterexample showing that, contrary to common belief, the above conditions are not sufficient to guarantee successful domain adaptation. In particular, the counterexample exhibits conditional shift: the class-conditional distributions of input features change between source and target domains. To give a sufficient condition for domain adaptation, we propose a natural and interpretable generalization upper bound that explicitly takes into account the aforementioned shift.Moreover, we shed new light on the problem by proving an information-theoretic lower bound on the joint error of any domain adaptation method that attempts to learn invariant representations.Our result characterizes a fundamental tradeoff between learning invariant representations and achieving small joint error on both domains when the marginal label distributions differ from source to target. Finally, we conduct experiments on real-world datasets that corroborate our theoretical findings. We believe these insights are helpful in guiding the future design of domain adaptation and representation learning algorithms.more » « less
- 
            We introduce the problem of domain adaptation under Open Set Label Shift (OSLS) where the label distribution can change arbitrarily and a new class may arrive during deployment, but the class-conditional distributions p(x|y) are domain-invariant. OSLS subsumes domain adaptation under label shift and Positive-Unlabeled (PU) learning. The learner's goals here are two-fold: (a) estimate the target label distribution, including the novel class; and (b) learn a target classifier. First, we establish necessary and sufficient conditions for identifying these quantities. Second, motivated by advances in label shift and PU learning, we propose practical methods for both tasks that leverage black-box predictors. Unlike typical Open Set Domain Adaptation (OSDA) problems, which tend to be ill-posed and amenable only to heuristics, OSLS offers a well-posed problem amenable to more principled machinery. Experiments across numerous semi-synthetic benchmarks on vision, language, and medical datasets demonstrate that our methods consistently outperform OSDA baselines, achieving 10--25% improvements in target domain accuracy. Finally, we analyze the proposed methods, establishing finite-sample convergence to the true label marginal and convergence to optimal classifier for linear models in a Gaussian setup.more » « less
- 
            We consider the problem of test-time adaptation of predictive models trained on tabular data. Effective solution of this problem requires adaptation of predictive models trained on the source domain to a target domain, using only unlabeled target domain data, without access to source domain data. Existing test-time adaptation methods for tabular data have difficulty coping with the heterogeneous features and their complex dependencies inherent in tabular data. To overcome these limitations, we consider test-time adaptation in the setting wherein the logical structure of the rules is assumed to remain invariant despite distribution shift between source and target domains whereas the numerical parameters associated with the rules and the weights assigned to them can vary to accommodate distribution shift. TabLog discretizes numerical features, models dependencies between heterogeneous features, introduces a novel contrastive loss for coping with distribution shift, and presents an end-to-end framework for efficient training and test-time adaptation by taking advantage of a logical neural network representation of a rule ensemble. We present results of experiments using several benchmark data sets that demonstrate TabLog is competitive with or improves upon the state-of-the-art methods for testtime adaptation of predictive models trained on tabular data. Our code is available at https:// github.com/WeijieyingRen/TabLog.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    