null
(Ed.)
Learning from label proportions (LLP) is a weakly supervised setting for classification in whichunlabeled training instances are grouped into bags, and each bag is annotated with the proportion ofeach class occurring in that bag. Prior work on LLP has yet to establish a consistent learning procedure,nor does there exist a theoretically justified, general purpose training criterion. In this work we addressthese two issues by posing LLP in terms of mutual contamination models (MCMs), which have recentlybeen applied successfully to study various other weak supervision settings. In the process, we establishseveral novel technical results for MCMs, including unbiased losses and generalization error bounds undernon-iid sampling plans. We also point out the limitations ofa common experimental setting for LLP,and propose a new one based on our MCM framework.
more »
« less
An official website of the United States government

