skip to main content


Title: Wirtinger Flow Meets Constant Modulus Algorithm: Revisiting Signal Recovery for Grant-Free Access
In this work, we analyze the convergence of constant modulus algorithm (CMA) in blindly recovering multiple signals to facilitate grant-free wireless access. The CMA typically solves a non-convex problem by utilizing stochastic gradient descent. The iterative convergence of CMA can be affected by additive channel noise and finite number of samples, which is a problem not fully investigated previously. We point out the strong similarity between CMA and the Wirtinger Flow (WF) algorithm originally proposed for Phase retrieval. In light of the convergence proof of WF under limited data samples, we adopt the WF algorithm to implement CMA-based blind signal recovery. We generalize the convergence analysis of WF in the context of CMA-based blind signal recovery. Numerical simulation results also corroborate the analysis.  more » « less
Award ID(s):
2009001 1711823 1824553
NSF-PAR ID:
10281852
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE transactions on signal processing
ISSN:
1941-0476
Page Range / eLocation ID:
Accepted
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a new nonconvex framework for blind multiple signal demixing and recovery. The proposed Riemann geometric approach extends the well known constant modulus algorithm to facilitate grant-free wireless access. For multiple signal demixing and recovery, we formulate the problem as non-convex problem optimization problem with signal orthogonality constraint in the form of Riemannian Orthogonal CMA(ROCMA). Unlike traditional stochastic gradient solutions that require large data samples, parameter tuning, and careful initialization, we leverage Riemannian geometry and transform the orthogonality requirement of recovered signals into a Riemannian manifold optimization. Our solution demonstrates full recovery of multiple access signals without large data sample size or special initialization with high probability of success. 
    more » « less
  2. The prospect of massive deployment of devices for Internet-of-Things (IoT) motivates grant-free access for simultaneously uplink transmission by multiple nodes. Blind demixing represents a promising technique for recovering multiple such source signals over unknown channels. Recent studies show Wirtinger Flow (WF) algorithm can be effective in blind demixing. However, existing theoretical results on WF step size selection tend to be conservative and slow down convergence rates. To overcome this limitation, we propose an improved WF (WF-OPT) by optimizing its step size in each iteration and expediting the convergence. We provide a theoretical guarantee on the strict contraction of WF-OPT and present the upper bounds of the contraction ratio. Simulation results demonstrate the expected convergence gains. 
    more » « less
  3. Deep neural networks have provided state-of-the-art solutions for problems such as image denoising, which implicitly rely on a prior probability model of natural images. Two recent lines of work – Denoising Score Matching and Plug-and-Play – propose methodologies for drawing samples from this implicit prior and using it to solve inverse problems, respectively. Here, we develop a parsimonious and robust generalization of these ideas. We rely on a classic statistical result that shows the least-squares solution for removing additive Gaussian noise can be written directly in terms of the gradient of the log of the noisy signal density. We use this to derive a stochastic coarse-to-fine gradient ascent procedure for drawing high-probability samples from the implicit prior embedded within a CNN trained to perform blind denoising. A generalization of this algorithm to constrained sampling provides a method for using the implicit prior to solve any deterministic linear inverse problem, with no additional training, thus extending the power of supervised learning for denoising to a much broader set of problems. The algorithm relies on minimal assumptions and exhibits robust convergence over a wide range of parameter choices. To demonstrate the generality of our method, we use it to obtain state-of-the-art levels of unsupervised performance for deblurring, super-resolution, and compressive sensing. 
    more » « less
  4. As applications of Internet-of-things (IoT) rapidly expand, unscheduled multiple user access with low latency and low cost communication is attracting growing more interests. To recover the multiple uplink signals without strict access control under dynamic co-channel interference environment, the problem of blind demixing emerges as an important obstacle for us to overcome. Without channel state information, successful blind demixing can recover multiple user signals more effectively by leveraging prior information on signal characteristics such as constellations and distribution. This work studies how forward error correction (FEC) codes in Galois Field can generate more effective blind demixing algorithms. We propose a constrained Wirtinger flow algorithm by defining a valid signal set based on FEC codewords. Specifically, targeting the popular polar codes for FEC of short IoT packets, we introduce signal projections within iterations of Wirtinger Flow based on FEC code information. Simulation results demonstrate stronger robustness of the proposed algorithm against noise and practical obstacles and also faster convergence rate compared to regular Wirtinger flow algorithm. 
    more » « less
  5. Blind deconvolution and phase retrieval are both fundamental problems with a growing interest in signal processing and communications. In this work, we consider the task of simultaneous blind deconvolution and phase retrieval. We show that this non-linear problem can be reformulated as a low-rank tensor recovery problem and propose an algorithm named TIHT-BDPR to recover the unknown parameters. We include a series of numerical simulations to illustrate the effectiveness of our proposed algorithm. 
    more » « less