skip to main content


Title: A Riemannian Geometric Approach to Blind SignalRecovery for Grant Free Radio Network Access
We propose a new nonconvex framework for blind multiple signal demixing and recovery. The proposed Riemann geometric approach extends the well known constant modulus algorithm to facilitate grant-free wireless access. For multiple signal demixing and recovery, we formulate the problem as non-convex problem optimization problem with signal orthogonality constraint in the form of Riemannian Orthogonal CMA(ROCMA). Unlike traditional stochastic gradient solutions that require large data samples, parameter tuning, and careful initialization, we leverage Riemannian geometry and transform the orthogonality requirement of recovered signals into a Riemannian manifold optimization. Our solution demonstrates full recovery of multiple access signals without large data sample size or special initialization with high probability of success.  more » « less
Award ID(s):
2009001 1711823
NSF-PAR ID:
10281830
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE transactions on signal processing
ISSN:
1941-0476
Page Range / eLocation ID:
Submitted
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As applications of Internet-of-things (IoT) rapidly expand, unscheduled multiple user access with low latency and low cost communication is attracting growing more interests. To recover the multiple uplink signals without strict access control under dynamic co-channel interference environment, the problem of blind demixing emerges as an important obstacle for us to overcome. Without channel state information, successful blind demixing can recover multiple user signals more effectively by leveraging prior information on signal characteristics such as constellations and distribution. This work studies how forward error correction (FEC) codes in Galois Field can generate more effective blind demixing algorithms. We propose a constrained Wirtinger flow algorithm by defining a valid signal set based on FEC codewords. Specifically, targeting the popular polar codes for FEC of short IoT packets, we introduce signal projections within iterations of Wirtinger Flow based on FEC code information. Simulation results demonstrate stronger robustness of the proposed algorithm against noise and practical obstacles and also faster convergence rate compared to regular Wirtinger flow algorithm. 
    more » « less
  2. Cuntz, Hermann (Ed.)
    Cellular barcoding methods offer the exciting possibility of ‘infinite-pseudocolor’ anatomical reconstruction—i.e., assigning each neuron its own random unique barcoded ‘pseudocolor,’ and then using these pseudocolors to trace the microanatomy of each neuron. Here we use simulations, based on densely-reconstructed electron microscopy microanatomy, with signal structure matched to real barcoding data, to quantify the feasibility of this procedure. We develop a new blind demixing approach to recover the barcodes that label each neuron, and validate this method on real data with known barcodes. We also develop a neural network which uses the recovered barcodes to reconstruct the neuronal morphology from the observed fluorescence imaging data, ‘connecting the dots’ between discontiguous barcode amplicon signals. We find that accurate recovery should be feasible, provided that the barcode signal density is sufficiently high. This study suggests the possibility of mapping the morphology and projection pattern of many individual neurons simultaneously, at high resolution and at large scale, via conventional light microscopy. 
    more » « less
  3. null (Ed.)
    Abstract One of the classical approaches for estimating the frequencies and damping factors in a spectrally sparse signal is the MUltiple SIgnal Classification (MUSIC) algorithm, which exploits the low-rank structure of an autocorrelation matrix. Low-rank matrices have also received considerable attention recently in the context of optimization algorithms with partial observations, and nuclear norm minimization (NNM) has been widely used as a popular heuristic of rank minimization for low-rank matrix recovery problems. On the other hand, it has been shown that NNM can be viewed as a special case of atomic norm minimization (ANM), which has achieved great success in solving line spectrum estimation problems. However, as far as we know, the general ANM (not NNM) considered in many existing works can only handle frequency estimation in undamped sinusoids. In this work, we aim to fill this gap and deal with damped spectrally sparse signal recovery problems. In particular, inspired by the dual analysis used in ANM, we offer a novel optimization-based perspective on the classical MUSIC algorithm and propose an algorithm for spectral estimation that involves searching for the peaks of the dual polynomial corresponding to a certain NNM problem, and we show that this algorithm is in fact equivalent to MUSIC itself. Building on this connection, we also extend the classical MUSIC algorithm to the missing data case. We provide exact recovery guarantees for our proposed algorithms and quantify how the sample complexity depends on the true spectral parameters. In particular, we provide a parameter-specific recovery bound for low-rank matrix recovery of jointly sparse signals rather than use certain incoherence properties as in existing literature. Simulation results also indicate that the proposed algorithms significantly outperform some relevant existing methods (e.g., ANM) in frequency estimation of damped exponentials. 
    more » « less
  4. null (Ed.)
    In this work, we analyze the convergence of constant modulus algorithm (CMA) in blindly recovering multiple signals to facilitate grant-free wireless access. The CMA typically solves a non-convex problem by utilizing stochastic gradient descent. The iterative convergence of CMA can be affected by additive channel noise and finite number of samples, which is a problem not fully investigated previously. We point out the strong similarity between CMA and the Wirtinger Flow (WF) algorithm originally proposed for Phase retrieval. In light of the convergence proof of WF under limited data samples, we adopt the WF algorithm to implement CMA-based blind signal recovery. We generalize the convergence analysis of WF in the context of CMA-based blind signal recovery. Numerical simulation results also corroborate the analysis. 
    more » « less
  5. Robinson, Emma Claire (Ed.)
    Modern spatial transcriptomics methods can target thousands of different types of RNA transcripts in a single slice of tissue. Many biological applications demand a high spatial density of transcripts relative to the imaging resolution, leading to partial mixing of transcript rolonies in many voxels; unfortunately, current analysis methods do not perform robustly in this highly-mixed setting. Here we develop a new analysis approach, BARcode DEmixing through Non-negative Spatial Regression (BarDensr): we start with a generative model of the physical process that leads to the observed image data and then apply sparse convex optimization methods to estimate the underlying (demixed) rolony densities. We apply BarDensr to simulated and real data and find that it achieves state of the art signal recovery, particularly in densely-labeled regions or data with low spatial resolution. Finally, BarDensr is fast and parallelizable. We provide open-source code as well as an implementation for the ‘NeuroCAAS’ cloud platform. 
    more » « less