skip to main content


Title: Expedition 375 Preliminary Report: Hikurangi Subduction Margin Coring and Observatories
Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expedition 375 was undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough by (1) coring at four sites, including an active fault near the deformation front, the upper plate above the high-slip SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll Seamount, and (2) installing borehole observatories in an active thrust near the deformation front and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372 (26 November 2017–4 January 2018; see the Expedition 372 Preliminary Report for further details on the LWD acquisition program). Northern Hikurangi subduction margin SSEs recur every 1–2 years and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. Sampling of material from the sedimentary section and oceanic basement of the subducting plate reveals the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate all the way to the trench, indicating that the shallow thrust fault zone targeted during Expedition 375 may also lie in the SSE rupture area. Hence, sampling at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expedition 375 (together with the Hikurangi subduction LWD component of Expedition 372) was designed to address three fundamental scientific objectives: (1) characterize the state and composition of the incoming plate and shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; (2) characterize material properties, thermal regime, and stress conditions in the upper plate above the core of the SSE source region; and (3) install observatories at an active thrust near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface.  more » « less
Award ID(s):
1326927
NSF-PAR ID:
10281945
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Preliminary report
Volume:
375
ISSN:
2372-9562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. Northern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate to the trench, indicating that the shallow thrust fault (the Pāpaku fault) targeted during Expeditions 372 and 375 may also lie in the SSE rupture area and host a portion of the slip in these events. Hence, sampling and logging at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expeditions 372 and 375 were designed to address three fundamental scientific objectives: 1. Characterize the state and composition of the incoming plate and shallow fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; 2. Characterize material properties, thermal regime, and stress conditions in the upper plate directly above the SSE source region; and 3. Install observatories in the Pāpaku fault near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less
  2. null (Ed.)
    Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expedition 375 aims to investigate the processes and in situ conditions that underlie subduction zone SSEs at northern Hikurangi through coring of the frontal thrust, upper plate, and incoming sedimentary succession and through installation of borehole observatories in the frontal thrust and upper plate above the slow slip source area. Logging-while-drilling (LWD) data for this project will be acquired as part of Expedition 372 (beginning in November 2017; see the Expedition 372 Scientific Prospectus for further details on the LWD acquisition program). Northern Hikurangi subduction margin SSEs recur every 2 years and thus provide an excellent setting to monitor deformation and associated chemical and physical properties surrounding the SSE source area throughout the slow slip cycle. Sampling material from the sedimentary section and oceanic basement of the subducting plate and from the primary active thrust in the outer wedge near the trench will reveal the rock properties, composition, and lithologic and structural character of the material transported downdip to the known SSE source region. A recent seafloor geodetic experiment shows the possibility that SSEs at northern Hikurangi may propagate all the way to the trench, indicating that the shallow fault zone target for Expedition 375 may lie within the SSE rupture area. Four primary sites are planned for coring, and observatories will be installed at two of these sites. Expedition 375 (together with the Hikurangi subduction component of Expedition 372) is designed to address three fundamental scientific objectives: (1) characterize the state and composition of the incoming plate and shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth; (2) characterize material properties, thermal regime, and stress conditions in the upper plate above the SSE source region; and (3) install observatories at the frontal thrust and in the upper plate above the SSE source to measure temporal variations in deformation, fluid flow, and seismicity. The observatories will monitor deformation and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of slow slip events and their relationship to great earthquakes along the subduction interface. 
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 372 combines two research topics, slow slip events (SSEs) on subduction faults (IODP Proposal 781A-Full) and actively deforming gas hydrate–bearing landslides (Proposal 841-APL). Our study area on the Hikurangi margin east of New Zealand provides unique locations for addressing both research topics. Gas hydrates have long been suspected of being involved in seafloor failure; not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, icelike gas hydrate in sediment pores is generally thought to increase seafloor strength, as confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may destabilize the seafloor, potentially causing submarine landslides. The Tuaheni Landslide Complex on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinchout of the base of gas hydrate stability (BGHS) on the seafloor. We therefore hypothesize that gas hydrate may be linked to creeping by (1) repeated small-scale sliding at the BGHS, in a variation of the conventional model linking gas hydrates and seafloor failure; (2) overpressure at the BGHS due to a permeability reduction linked to gas hydrates, which may lead to hydrofracturing, weakening the seafloor and allowing transmission of pressure into the gas hydrate stability zone; or (3) icelike viscous deformation of gas hydrates in sediment pores, similar to onshore rock glaciers. The latter two processes imply that gas hydrate itself is involved in creeping, constituting a paradigm shift in relating gas hydrates to submarine slope failure. Alternatively, creeping may not be related to gas hydrates but instead be caused by repeated pressure pulses or linked to earthquake-related liquefaction. We have devised a coring and logging program to test our hypotheses. SSEs at subduction zones are an enigmatic form of creeping fault behavior. At the northern Hikurangi subduction margin (HSM), they are among the best-documented and shallowest on Earth. They recur about every 2 y and may extend close to the trench, where clastic and pelagic sediments about 1.0–1.5 km thick overlie the subducting, seamount-studded Hikurangi Plateau. The northern HSM thus provides an excellent setting to use IODP capabilities to discern the mechanisms behind slow slip fault behavior, as proposed in IODP Proposal 781A-Full. The objectives of Proposal 781A-Full will be implemented across two related IODP expeditions, 372 and 375. Expedition 372 will undertake logging while drilling (LWD) at three sites targeting the upper plate (midslope basin, proposed Site HSM-01A), the frontal thrust (proposed Site HSM-18A), and the subducting section in the trench (proposed Site HSM-05A). Expedition 375 will undertake coring at the same sites, as well as an additional seamount site on the subducting plate, and implement the borehole observatory objectives. The data from each expedition will be shared between both scientific parties. Collectively, the LWD and coring data will be used to (1) characterize the compositional, structural, thermal, and diagenetic state of the incoming plate and the shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock associated with SSEs at greater depth, and (2) characterize the material properties, thermal regime, and stress conditions in the upper plate above the SSE source region. These data will be used during Expedition 375 to guide the installation of CORK observatories at the frontal thrust and in the upper plate above the SSE source to monitor temporal variations in deformation, fluid flow, seismicity, and physical and chemical properties throughout the SSE cycle (Saffer et al., 2017). Together, these data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less
  4. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 372 combined two research topics, slow slip events (SSEs) on subduction faults (IODP Proposal 781A-Full) and actively deforming gas hydrate–bearing landslides (IODP Proposal 841-APL). Our study area on the Hikurangi margin, east of the coast of New Zealand, provided unique locations for addressing both research topics. SSEs at subduction zones are an enigmatic form of creeping fault behavior. They typically occur on subduction zones at depths beyond the capabilities of ocean floor drilling. However, at the northern Hikurangi subduction margin they are among the best-documented and shallowest on Earth. Here, SSEs may extend close to the trench, where clastic and pelagic sediments about 1.0–1.5 km thick overlie the subducting, seamount-studded Hikurangi Plateau. Geodetic data show that these SSEs recur about every 2 years and are associated with measurable seafloor displacement. The northern Hikurangi subduction margin thus provides an excellent setting to use IODP capabilities to discern the mechanisms behind slow slip fault behavior. Expedition 372 acquired logging-while-drilling (LWD) data at three subduction-focused sites to depths of 600, 650, and 750 meters below seafloor (mbsf), respectively. These include two sites (U1518 and U1519) above the plate interface fault that experiences SSEs and one site (U1520) in the subducting “inputs” sequence in the Hikurangi Trough, 15 km east of the plate boundary. Overall, we acquired excellent logging data and reached our target depths at two of these sites. Drilling and logging at Site U1520 did not reach the planned depth due to operational time constraints. These logging data will be augmented by coring and borehole observatories planned for IODP Expedition 375. Gas hydrates have long been suspected of being involved in seafloor failure; not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, ice-like gas hydrate in sediment pores is generally thought to increase seafloor strength, as confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may weaken and destabilize sediments, potentially causing submarine landslides. The Tuaheni Landslide Complex (TLC) on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinch-out of the base of gas hydrate stability on the seafloor. We therefore hypothesized that gas hydrate may be linked to creep-like deformation and presented several hypotheses that may link gas hydrates to slow deformation. Alternatively, creeping may not be related to gas hydrates but instead be caused by repeated pressure pulses or linked to earthquake-related liquefaction. Expedition 372 comprised a coring and LWD program to test our landslide hypotheses. Due to weather-related downtime, the gas hydrate-related program was reduced, and we focused on a set of experiments at Site U1517 in the creeping part of the TLC. We conducted a successful LWD and coring program to 205 mbsf, the latter with almost complete recovery, through the TLC and gas hydrate stability zone, followed by temperature and pressure tool deployments. 
    more » « less
  5. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 372 combined two research topics: actively deforming gas hydrate–bearing landslides (IODP Proposal 841-APL) and slow slip events on subduction faults (IODP Proposal 781A-Full). This expedition included a coring and logging-while-drilling (LWD) program for Proposal 841-APL and a LWD program for Proposal 781A-Full. The coring and observatory placement for Proposal 781A-Full were completed during Expedition 375. The Expedition 372A Proceedings volume focuses only on the results related to Proposal 841-APL. The results of the Hikurangi margin drilling are found in the Expedition 372B/375 Proceedings volume. Gas hydrates have long been suspected of being involved in seafloor failure. Not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, ice-like gas hydrate in sediment pores is generally thought to increase seafloor strength, which is confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may weaken and destabilize sediments, potentially causing submarine landslides. The Tuaheni Landslide Complex (TLC) on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinch-out of the base of gas hydrate stability on the seafloor. We therefore proposed that gas hydrate may be involved in creep-like deformation and presented several hypotheses that may link gas hydrates to slow deformation. Alternatively, creeping may not be related to gas hydrates but instead be caused by repeated pressure pulses or linked to earthquake-related liquefaction. Plans for Expedition 372A included a coring and LWD program to test our landslide hypotheses. Because of weather-related downtime, the gas hydrate–related program was reduced and we focused on a set of experiments at Site U1517 in the creeping part of the TLC. We conducted a LWD and coring program to 205 m below the seafloor through the TLC and the gas hydrate stability zone, followed by temperature and pressure tool deployments. 
    more » « less