skip to main content


Title: Local Correlation Clustering with Asymmetric Classification Errors
In the Correlation Clustering problem, we are given a complete weighted graph G with its edges labeled as “similar" and “dissimilar" by a noisy binary classifier. For a clustering C of graph G, a similar edge is in disagreement with C, if its endpoints belong to distinct clusters; and a dissimilar edge is in disagreement with C if its endpoints belong to the same cluster. The disagreements vector, Agree, is a vector indexed by the vertices of G such that the v-th coordinate Disagre equals the weight of all disagreeing edges incident on v. The goal is to produce a clustering that minimizes the ℓp norm of the disagreements vector for p≥1. We study the ℓ_p objective in Correlation Clustering under the following assumption: Every similar edge has weight in [αw,w] and every dissimilar edge has weight at least αw (where α≤1 and w>0 is a scaling parameter). We give an O((1/α)^{1/2−1/2p}⋅log(1/α)) approximation algorithm for this problem. Furthermore, we show an almost matching convex programming integrality gap.  more » « less
Award ID(s):
1955351
NSF-PAR ID:
10281989
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the Correlation Clustering problem, we are given a complete weighted graph G with its edges labeled as “similar" and “dissimilar" by a noisy binary classifier. For a clustering C of graph G, a similar edge is in disagreement with C, if its endpoints belong to distinct clusters; and a dissimilar edge is in disagreement with C if its endpoints belong to the same cluster. The disagreements vector is a vector indexed by the vertices of G such that the v-th coordinate of the disagreements vector equals the weight of all disagreeing edges incident on v. The goal is to produce a clustering that minimizes the ℓp norm of the disagreements vector for p≥1. We study the ℓ_p objective in Correlation Clustering under the following assumption: Every similar edge has weight in [αw,w] and every dissimilar edge has weight at least αw (where α ≤ 1 and w > 0 is a scaling parameter). We give an O((1/α)^{1/2−1/(2p)} log 1/α) approximation algorithm for this problem. Furthermore, we show an almost matching convex programming integrality gap. 
    more » « less
  2. Meila, Marina ; Zhang, Tong (Ed.)
    In the Correlation Clustering problem, we are given a complete weighted graph $G$ with its edges labeled as “similar" and “dissimilar" by a noisy binary classifier. For a clustering $\mathcal{C}$ of graph $G$, a similar edge is in disagreement with $\mathcal{C}$, if its endpoints belong to distinct clusters; and a dissimilar edge is in disagreement with $\mathcal{C}$ if its endpoints belong to the same cluster. The disagreements vector, $\mathbf{disagree}$, is a vector indexed by the vertices of $G$ such that the $v$-th coordinate $\mathbf{disagree}_v$ equals the weight of all disagreeing edges incident on $v$. The goal is to produce a clustering that minimizes the $\ell_p$ norm of the disagreements vector for $p\geq 1$. We study the $\ell_p$ objective in Correlation Clustering under the following assumption: Every similar edge has weight in $[\alpha\mathbf{w},\mathbf{w}]$ and every dissimilar edge has weight at least $\alpha\mathbf{w}$ (where $\alpha \leq 1$ and $\mathbf{w}>0$ is a scaling parameter). We give an $O\left((\frac{1}{\alpha})^{\frac{1}{2}-\frac{1}{2p}}\cdot \log\frac{1}{\alpha}\right)$ approximation algorithm for this problem. Furthermore, we show an almost matching convex programming integrality gap. 
    more » « less
  3. In the Correlation Clustering problem, we are given a weighted graph $G$ with its edges labelled as "similar" or "dissimilar" by a binary classifier. The goal is to produce a clustering that minimizes the weight of "disagreements": the sum of the weights of "similar" edges across clusters and "dissimilar" edges within clusters. We study the correlation clustering problem under the following assumption: Every "similar" edge $e$ has weight $w_e \in [ \alpha w, w ]$ and every "dissimilar" edge $e$ has weight $w_e \geq \alpha w$ (where $\alpha \leq 1$ and $w > 0$ is a scaling parameter). We give a $(3 + 2 \log_e (1/\alpha))$ approximation algorithm for this problem. This assumption captures well the scenario when classification errors are asymmetric. Additionally, we show an asymptotically matching Linear Programming integrality gap of $\Omega(\log 1/\alpha)$ 
    more » « less
  4. We present a weighted approach to compute a maximum cardinality matching in an arbitrary bipartite graph. Our main result is a new algorithm that takes as input a weighted bipartite graph G(A cup B,E) with edge weights of 0 or 1. Let w <= n be an upper bound on the weight of any matching in G. Consider the subgraph induced by all the edges of G with a weight 0. Suppose every connected component in this subgraph has O(r) vertices and O(mr/n) edges. We present an algorithm to compute a maximum cardinality matching in G in O~(m(sqrt{w} + sqrt{r} + wr/n)) time. When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm will be identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m sqrt{n}) time. However, if we can carefully assign weights of 0 and 1 on its edges such that both w and r are sub-linear in n and wr=O(n^{gamma}) for gamma < 3/2, then we can compute maximum cardinality matching in G in o(m sqrt{n}) time. Using our algorithm, we obtain a new O~(n^{4/3}/epsilon^4) time algorithm to compute an epsilon-approximate bottleneck matching of A,B subsetR^2 and an 1/(epsilon^{O(d)}}n^{1+(d-1)/(2d-1)}) poly log n time algorithm for computing epsilon-approximate bottleneck matching in d-dimensions. All previous algorithms take Omega(n^{3/2}) time. Given any graph G(A cup B,E) that has an easily computable balanced vertex separator for every subgraph G'(V',E') of size |V'|^{delta}, for delta in [1/2,1), we can apply our algorithm to compute a maximum matching in O~(mn^{delta/1+delta}) time improving upon the O(m sqrt{n}) time taken by the HK-Algorithm. 
    more » « less
  5. null (Ed.)
    The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Benczúr and Karger (1996) showed that given any n-vertex undirected weighted graph G and a parameter ε ∈ (0,1), there is a near-linear time algorithm that outputs a weighted subgraph G' of G of size Õ(n/ε²) such that the weight of every cut in G is preserved to within a (1 ± ε)-factor in G'. The graph G' is referred to as a (1 ± ε)-approximate cut sparsifier of G. Subsequent recent work has obtained a similar result for the more general problem of hypergraph cut sparsifiers. However, all known sparsification algorithms require Ω(n + m) time where n denotes the number of vertices and m denotes the number of hyperedges in the hypergraph. Since m can be exponentially large in n, a natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in n, independent of the number of edges. We resolve this question in the affirmative, giving the first sublinear time algorithm for this problem, given appropriate query access to the hypergraph. Specifically, we design an algorithm that constructs a (1 ± ε)-approximate cut sparsifier of a hypergraph H(V,E) in polynomial time in n, independent of the number of hyperedges, when given access to the hypergraph using the following two queries: 1) given any cut (S, ̄S), return the size |δ_E(S)| (cut value queries); and 2) given any cut (S, ̄S), return a uniformly at random edge crossing the cut (cut edge sample queries). Our algorithm outputs a sparsifier with Õ(n/ε²) edges, which is essentially optimal. We then extend our results to show that cut value and cut edge sample queries can also be used to construct hypergraph spectral sparsifiers in poly(n) time, independent of the number of hyperedges. We complement the algorithmic results above by showing that any algorithm that has access to only one of the above two types of queries can not give a hypergraph cut sparsifier in time that is polynomial in n. Finally, we show that our algorithmic results also hold if we replace the cut edge sample queries with a pair neighbor sample query that for any pair of vertices, returns a random edge incident on them. In contrast, we show that having access only to cut value queries and queries that return a random edge incident on a given single vertex, is not sufficient. 
    more » « less