skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: An in situ adaptive tabulation based approach to multi-component transcritical flow simulation
The studies of transcritical and supercritical flow have attracted much interest in the past 30 years. However, most of them mainly focus on the single-component system, whose critical point is constant. We use the vapor-liquid equilibrium (VLE) theory to capture the thermodynamic properties of the mixture and investigate transcritical flows (i.e., supercritical CO2 oxy-combustion systems). In sCO2 oxy-combustion systems, due to the presence of water from the previous cycles, the mixture critical point increases significantly, such that the phase separation could occur in both the compressor and combustor. However, the VLE solver increases the computation cost of fluid simulation significantly, which limited the size of simulations we can conduct. Naturally, tabulation methods can be used to store the VLE solutions to avoids redundant computation. However, the size of the VLE table increases exponentially with respect to the number of components. When the number of species components is greater than three, the size of the VLE table far exceeds the RAM’s limit in today’s standard computers. In this research, an online tabulation method based on In Situ Adaptive Tabulation (ISAT) is developed to accelerate the computation of multicomponent fluids based on VLE theory. Accuracy and efficiency are analyzed and discussed. The CFD solver used in this research is based on the Pressure-Implicit with Splitting of Operators (PISO) method. Peng-Robinson equation of state (EOS) is used in the calculations of phase equilibrium.  more » « less
Award ID(s):
2023932
PAR ID:
10282022
Author(s) / Creator(s):
;
Date Published:
Journal Name:
12th U.S. National Combustion Meeting
Page Range / eLocation ID:
usncm12-1E01
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The studies of transcritical and supercritical injection have attracted much interest in the past 30 years. However, most of them were mainly concentrated on the single-component system, whose critical point is a constant value. To capture the thermophysical properties of multicomponent, a phase equilibrium solver is needed, which is also called a vapor-liquid equilibrium (VLE) solver. But VLE solver increases the computation cost significantly. Tabulation methods can be used to store the solution to avoids a mass of redundant computation. However, the size of a table increases exponentially with respect to the number of components. When the number of species is greater than 3, the size of a table far exceeds the limit of RAM in today's computers. In this research, an online tabulation method based on In Situ Adaptive Tabulation (ISAT) is developed to accelerate the computation of multicomponent fluid. Accuracy and efficiency are analyzed and discussed. The CFD solver used in this research is based on the Pressure-Implicit with Splitting of Operators (PISO) method. Peng-Robinson equation of state is used in phase equilibrium. 
    more » « less
  2. null (Ed.)
    The studies of transcritical and supercritical injection have attracted much interest in the past 30 years. However, most of them were mainly concentrated on the single-component system, whose critical point is a constant value. To capture the thermophysical properties of multicomponent, a phase equilibrium solver is needed, which is also called a vapor-liquid equilibrium (VLE) solver. But VLE solver increases the computation cost significantly. Tabulation methods can be used to store the solution to avoids a mass of redundant computation. However, the size of a table increases exponentially with respect to the number of components. When the number of species is greater than 3, the size of a table far exceeds the limit of RAM in today's computers. In this research, an online tabulation method based on In Situ Adaptive Tabulation (ISAT) is developed to accelerate the computation of multicomponent fluid. Accuracy and efficiency are analyzed and discussed. The CFD solver used in this research is based on the Pressure-Implicit with Splitting of Operators (PISO) method. Peng-Robinson equation of state is used in phase equilibrium. 
    more » « less
  3. To achieve high power density and thermodynamic cycle efficiency, the working pressures of liquid-propellant rocket engines, diesel engines, and gas turbines (based on deflagration or detonation) are continuously increasing, which could reach or go beyond the thermodynamic critical pressure of the liquid propellant. For this reason, the studies of trans- and super-critical injection are getting more and more attention. However, the simulation of transcritical phase change is still a challenging topic. The phase boundary, especially near the mixture critical point, needs to be accurately determined to investigate the multicomponent effects on transcritical injection and atomization. This work used our previously developed thermodynamic model based on the vapor-liquid equilibrium (VLE) theory, which can predict the phase separation near the mixture critical point. An \textit{in situ} adaptive tabulation (ISAT) method was developed to accelerate the computationally expensive multicomponent VLE computation such that it can be cheap enough for CFD. The new thermodynamic model was integrated into OpenFOAM to develop a VLE-based CFD solver. In this work, shock-droplet interaction and two-phase mixing simulations are conducted using our new VLE-based CFD solver. The shock-droplet interaction simulation results capture the thermodynamic condition of the surface entering the supercritical state after shock passes through. The atomization of droplets could be triggered by vorticity formed at the droplets' surface. 2D temporal mixing layer simulations show the evolution of the transcritical mixing layer and capture the phase split effect at the mixing layer. 
    more » « less
  4. To achieve high performance, the working pressure of liquid-fueled rocket engines, diesel engines, and gas turbines (based on deflagration or detonation) is continuously increasing, which could reach the thermodynamic critical pressure of the liquid fuel. For this reason, the studies of trans- and super-critical injection are getting more attention. However, most of the multiphase researches were mainly concentrated on single- or two-component systems, which cannot capture the multicomponent phase change in real high-pressure engines and gas turbines. The phase boundary, especially near the critical points, needs to be accurately determined to investigate the multicomponent effects in transcritical flow. This work used our previously developed thermodynamic model based on the vapor-liquid equilibrium (VLE) theory, which can predict the phase separation near the critical points. An in situ adaptive tabulation (ISAT) method was developed to accelerate the computation of the VLE model such that the expensive multicomponent VLE calculation can be cheap enough for CFD. The new thermodynamic model was integrated into OpenFOAM to build a VLE-based CFD solver. In this work, simulations are conducted using our new VLE-based CFD solver to reveal the phase change effects in transcritical flow. Specifically, shock-droplet interaction are investigated to reveal the shock-driven high pressure phase change. 
    more » « less
  5. In the pursuit of enhanced engine performance and reduced emissions, the design of liquid-fueled propulsion systems is shifting towards much higher combustor pressures, surpassing the nominal critical pressure of the fuel and air. This trend leads to the adoption of supercritical conditions, wherein the liquid fuel is injected into the ambient air at supercritical pressure and temperature, causing the fuel temperature to exceed its nominal critical point. This transition from a liquid-like to a gas-like behavior, known as "transcritical behavior," is a crucial aspect governing the operation of modern high-pressure propulsion and energy conversion systems. In these systems, the primary liquid jet breakup and the subsequent break-up of the resulting droplets into smaller droplets, namely secondary breakup, significantly impact mixing and combustion processes. Despite its importance, there has been a limited focus on droplet breakup at supercritical conditions, particularly at higher flow speeds relevant to high-speed liquid-fuel propulsion systems. Surface tension effects are often neglected in the simulation of transcritical flow, assuming surface tension vanishes beyond the critical point, while recent experiments and molecular dynamics simulations suggest that surface tension effects persist at transcritical conditions. To gain insight into the effects of surface tension on transcritical flows, we have developed a fully compressible multiphaseDirect Numerical Simulation (DNS) approach that accounts for decaying surface effects. The diffuse interface method is employed to represent transcritical interfaces, accounting for surface tension effects calculated using molecular dynamics simulations. This approach is employed to investigate the behavior of subcritical n-dodecane droplets in a supercritical nitrogen environment interacting with a shockwave, aiming to identify the governing breakup regimes at transcritical conditions. The development of quantitative measures enables the generalization of droplet breakup modes for transcritical droplets. The insights gained from this study contribute to advancing the understanding of transcritical liquid breakup, providing valuable knowledge for designing and optimizing high-speed propulsion systems 
    more » « less